首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two images, “black swans” and “perfect storms,” have struck the public's imagination and are used—at times indiscriminately—to describe the unthinkable or the extremely unlikely. These metaphors have been used as excuses to wait for an accident to happen before taking risk management measures, both in industry and government. These two images represent two distinct types of uncertainties (epistemic and aleatory). Existing statistics are often insufficient to support risk management because the sample may be too small and the system may have changed. Rationality as defined by the von Neumann axioms leads to a combination of both types of uncertainties into a single probability measure—Bayesian probability—and accounts only for risk aversion. Yet, the decisionmaker may also want to be ambiguity averse. This article presents an engineering risk analysis perspective on the problem, using all available information in support of proactive risk management decisions and considering both types of uncertainty. These measures involve monitoring of signals, precursors, and near‐misses, as well as reinforcement of the system and a thoughtful response strategy. It also involves careful examination of organizational factors such as the incentive system, which shape human performance and affect the risk of errors. In all cases, including rare events, risk quantification does not allow “prediction” of accidents and catastrophes. Instead, it is meant to support effective risk management rather than simply reacting to the latest events and headlines.  相似文献   

2.
Scott Janzwood 《Risk analysis》2023,43(10):2004-2016
Outside of the field of risk analysis, an important theoretical conversation on the slippery concept of uncertainty has unfolded over the last 40 years within the adjacent field of environmental risk. This literature has become increasingly standardized behind the tripartite distinction between uncertainty location, the nature of uncertainty, and uncertainty level, popularized by the “W&H framework.” This article introduces risk theorists and practitioners to the conceptual literature on uncertainty with the goal of catalyzing further development and clarification of the uncertainty concept within the field of risk analysis. It presents two critiques of the W&H framework's dimension of uncertainty level—the dimension that attempts to define the characteristics separating greater uncertainties from lesser uncertainties. First, I argue the framework's conceptualization of uncertainty level lacks a clear and consistent epistemological position and fails to acknowledge or reconcile the tensions between Bayesian and frequentist perspectives present within the framework. This article reinterprets the dimension of uncertainty level from a Bayesian perspective, which understands uncertainty as a mental phenomenon arising from “confidence deficits” as opposed to the ill-defined notion of “knowledge deficits” present in the framework. And second, I elaborate the undertheorized concept of uncertainty “reducibility.” These critiques inform a clarified conceptualization of uncertainty level that can be integrated with risk analysis concepts and usefully applied by modelers and decisionmakers engaged in model-based decision support.  相似文献   

3.
The concept of resilience and its relevance to disaster risk management has increasingly gained attention in recent years. It is common for risk and resilience studies to model system recovery by analyzing a single or aggregated measure of performance, such as economic output or system functionality. However, the history of past disasters and recent risk literature suggest that a single-dimension view of relevant systems is not only insufficient, but can compromise the ability to manage risk for these systems. In this article, we explore how multiple dimensions influence the ability for complex systems to function and effectively recover after a disaster. In particular, we compile evidence from the many competing resilience perspectives to identify the most critical resilience dimensions across several academic disciplines, applications, and disaster events. The findings demonstrate the need for a conceptual framework that decomposes resilience into six primary dimensions: workforce/population, economy, infrastructure, geography, hierarchy, and time (WEIGHT). These dimensions are not typically addressed holistically in the literature; often they are either modeled independently or in piecemeal combinations. The current research is the first to provide a comprehensive discussion of each resilience dimension and discuss how these dimensions can be integrated into a cohesive framework, suggesting that no single dimension is sufficient for a holistic analysis of a disaster risk management. Through this article, we also aim to spark discussions among researchers and policymakers to develop a multicriteria decision framework for evaluating the efficacy of resilience strategies. Furthermore, the WEIGHT dimensions may also be used to motivate the generation of new approaches for data analytics of resilience-related knowledge bases.  相似文献   

4.
《Risk analysis》2018,38(5):876-888
To solve real‐life problems—such as those related to technology, health, security, or climate change—and make suitable decisions, risk is nearly always a main issue. Different types of sciences are often supporting the work, for example, statistics, natural sciences, and social sciences. Risk analysis approaches and methods are also commonly used, but risk analysis is not broadly accepted as a science in itself. A key problem is the lack of explanatory power and large uncertainties when assessing risk. This article presents an emerging new risk analysis science based on novel ideas and theories on risk analysis developed in recent years by the risk analysis community. It builds on a fundamental change in thinking, from the search for accurate predictions and risk estimates, to knowledge generation related to concepts, theories, frameworks, approaches, principles, methods, and models to understand, assess, characterize, communicate, and (in a broad sense) manage risk. Examples are used to illustrate the importance of this distinct/separate risk analysis science for solving risk problems, supporting science in general and other disciplines in particular.  相似文献   

5.
6.
A Scale of Risk     
This article proposes a conceptual framework for ranking the relative gravity of diverse risks. This framework identifies the moral considerations that should inform the evaluation and comparison of diverse risks. A common definition of risk includes two dimensions: the probability of occurrence and the associated consequences of a set of hazardous scenarios. This article first expands this definition to include a third dimension: the source of a risk. The source of a risk refers to the agents involved in the creation or maintenance of a risk and captures a central moral concern about risks. Then, a scale of risk is proposed to categorize risks along a multidimensional ranking, based on a comparative evaluation of the consequences, probability, and source of a given risk. A risk is ranked higher on the scale the larger the consequences, the greater the probability, and the more morally culpable the source. The information from the proposed comparative evaluation of risks can inform the selection of priorities for risk mitigation.  相似文献   

7.
Terje Aven  Roger Flage 《Risk analysis》2023,43(8):1525-1532
This article aims to provide new insights about risk and uncertainty in law contexts, by incorporating ideas and principles of contemporary risk science. The main focus is on one particular aspect of the law: its operation in courts where a defendant has been charged with a violation of civil or criminal law. Judgements about risk and uncertainty—typically using the probability concept—and how these relate to the evidence play a central role in such situations. The decision on whether the defendant is liable/guilty or not may strongly depend on how these concepts are understood and communicated. Considerable work has been conducted to provide theoretical and practical foundations for the risk and uncertainty characterizations in these contexts. Yet, it can be argued that a proper foundation for linking the evidence and the uncertainty (probability) judgements is lacking, the result being poor communication in courts about risk and uncertainties. The present article seeks to clarify what the problems are and provide guidance on how to rectify them.  相似文献   

8.
Terje Aven 《Risk analysis》2013,33(12):2082-2091
Recently, several authors have presented interesting contributions on how to meet deep or severe uncertainties in a risk analysis setting. In this article, we provide some reflections on some of the foundational pillars that this work is based on, including the meaning of concepts such as deep uncertainty, known probabilities, and correct models, the aim being to contribute to a strengthening of the scientific platform of the work, as well as providing new insights on how to best implement management policies meeting these uncertainties. We also provide perspectives on the boundaries and limitations of analytical approaches for supporting decision making in cases of deep uncertainties. A main conclusion of the article is that deep uncertainties call for managerial review and judgment that sees beyond the analytical frameworks studied in risk assessment and risk management contexts, including those now often suggested to be used, such as robust optimization techniques. This managerial review and judgment should be seen as a basic element of the risk management.  相似文献   

9.
In this paper we study identification and estimation of a correlated random coefficients (CRC) panel data model. The outcome of interest varies linearly with a vector of endogenous regressors. The coefficients on these regressors are heterogenous across units and may covary with them. We consider the average partial effect (APE) of a small change in the regressor vector on the outcome (cf. Chamberlain (1984), Wooldridge (2005a)). Chamberlain (1992) calculated the semiparametric efficiency bound for the APE in our model and proposed a √N‐consistent estimator. Nonsingularity of the APE's information bound, and hence the appropriateness of Chamberlain's (1992) estimator, requires (i) the time dimension of the panel (T) to strictly exceed the number of random coefficients (p) and (ii) strong conditions on the time series properties of the regressor vector. We demonstrate irregular identification of the APE when T = p and for more persistent regressor processes. Our approach exploits the different identifying content of the subpopulations of stayers—or units whose regressor values change little across periods—and movers—or units whose regressor values change substantially across periods. We propose a feasible estimator based on our identification result and characterize its large sample properties. While irregularity precludes our estimator from attaining parametric rates of convergence, its limiting distribution is normal and inference is straightforward to conduct. Standard software may be used to compute point estimates and standard errors. We use our methods to estimate the average elasticity of calorie consumption with respect to total outlay for a sample of poor Nicaraguan households.  相似文献   

10.
We employ a novel data set to estimate a structural econometric model of the decisions under risk of players in a game show where lotteries present payoffs in excess of half a million dollars. The decisions under risk of players in the presence of large payoffs allow us to estimate the parameters of the curvature of the von Neumann–Morgenstern utility function—not only locally, as in previous studies in the literature, but also globally. Our estimates of relative risk aversion indicate that a constant relative risk aversion parameter of about 1 captures the average of the sample population. We also find that individuals are practically risk neutral at small stakes and risk averse at large stakes—a necessary condition, according to Rabin’s calibration theorem, for expected utility to provide a unified account of individuals’ attitudes toward risk. Finally, we show that for lotteries characterized by substantial stakes, nonexpected utility theories fit the data equally as well as expected utility theory.  相似文献   

11.
The purpose of this article is to discuss the role of quantitative risk assessments for characterizing risk and uncertainty and delineating appropriate risk management options. Our main concern is situations (risk problems) with large potential consequences, large uncertainties, and/or ambiguities (related to the relevance, meaning, and implications of the decision basis; or related to the values to be protected and the priorities to be made), in particular terrorism risk. We look into the scientific basis of the quantitative risk assessments and the boundaries of the assessments in such a context. Based on a risk perspective that defines risk as uncertainty about and severity of the consequences (or outcomes) of an activity with respect to something that humans value we advocate a broad risk assessment approach characterizing uncertainties beyond probabilities and expected values. Key features of this approach are qualitative uncertainty assessment and scenario building instruments.  相似文献   

12.
Rising global food prices have driven 44 million additional people into extreme poverty—and malnutrition—in developing countries since June 2010. Partners in Food Solutions (PFS), a nonprofit social enterprise affiliated with General Mills, is proposed as the conduit for food industry managers, engineers, and scientists to initially advise small‐ and medium‐sized African mills and food processors—and later other developing countries—on improving supply chain management by addressing manufacturing problems, developing products, improving packaging, extending product shelf, and finding new product markets. In this article, the “creative capitalism” model of sustainability and social and environmental responsibility is applied to the food manufacturing industry's efforts supporting PFS. Furthermore, the evolution of the sustainable business model developed by PFS is thoroughly described, explained, and analyzed as a generic model of social enterprise to be “scaled up” by the global food manufacturing industry. A summary of salient points conclude the article.  相似文献   

13.
Yacov Y. Haimes 《Risk analysis》2012,32(9):1451-1467
This article is grounded on the premise that the complex process of risk assessment, management, and communication, when applied to systems of systems, should be guided by universal systems‐based principles. It is written from the perspective of systems engineering with the hope and expectation that the principles introduced here will be supplemented and complemented by principles from the perspectives of other disciplines. Indeed, there is no claim that the following 10 guiding principles constitute a complete set; rather, the intent is to initiate a discussion on this important subject that will incrementally lead us to a more complete set of guiding principles. The 10 principles are as follows: First Principle: Holism is the common denominator that bridges risk analysis and systems engineering. Second Principle: The process of risk modeling, assessment, management, and communication must be systemic and integrated. Third Principle: Models and state variables are central to quantitative risk analysis. Fourth Principle: Multiple models are required to represent the essence of the multiple perspectives of complex systems of systems. Fifth Principle: Meta‐modeling and subsystems integration must be derived from the intrinsic states of the system of systems. Sixth Principle: Multiple conflicting and competing objectives are inherent in risk management. Seventh Principle: Risk analysis must account for epistemic and aleatory uncertainties. Eighth Principle: Risk analysis must account for risks of low probability with extreme consequences. Ninth Principle: The time frame is central to quantitative risk analysis. Tenth Principle: Risk analysis must be holistic, adaptive, incremental, and sustainable, and it must be supported with appropriate data collection, metrics with which to measure efficacious progress, and criteria on the basis of which to act. The relevance and efficacy of each guiding principle is demonstrated by applying it to the U.S. Federal Aviation Administration complex Next Generation (NextGen) system of systems.  相似文献   

14.
15.
Few global threats rival global climate change in scale and potential consequence. The principal international authority assessing climate risk is the Intergovernmental Panel on Climate Change (IPCC). Through repeated assessments the IPCC has devoted considerable effort and interdisciplinary competence to articulating a common characterization of climate risk and uncertainties. We have reviewed the assessment and its foundation for the Fifth Assessment Reports published in 2013 and 2014, in particular the guidance note for lead authors of the fifth IPCC assessment report on consistent treatment of uncertainties. Our analysis shows that the work carried out by the ICPP is short of providing a theoretically and conceptually convincing foundation on the treatment of risk and uncertainties. The main reasons for our assessment are: (i) the concept of risk is given a too narrow definition (a function of consequences and probability/likelihood); and (ii) the reports lack precision in delineating their concepts and methods. The goal of this article is to contribute to improving the handling of uncertainty and risk in future IPCC studies, thereby obtaining a more theoretically substantiated characterization as well as enhanced scientific quality for risk analysis in this area. Several suggestions for how to improve the risk and uncertainty treatment are provided.  相似文献   

16.
Terje Aven 《Risk analysis》2013,33(3):462-468
The risk appetite concept has been given considerable attention recently in enterprise risk management contexts. A number of definitions exist, most with a link to risk acceptability, but also values and goals. The usefulness of the concept is, however, disputed; some authors argue that we can in fact do better without it. In this article, we provide a thorough discussion of what the risk appetite concept is actually trying to express and how it best can be used in the relevant decision making. The main purposes of the article are (i) to argue that the risk appetite concept, suitably interpreted, has a role to play in risk management, (ii) to show that the risk appetite concept is well supported by some types of risk perspectives and not by others, and (iii) to show how the risk appetite concept is linked to other related concepts, such as risk seeking and risk acceptability. The risk perspectives studied range from expected value and probability based definitions of risk to views on risk, that are founded on uncertainties.  相似文献   

17.
对移动网络环境下消费者对增值服务的感知风险的前因进行了实证研究,采用问卷法对移动增值服务的主要用户群进行了抽样调查,使用结构方程模型检验了消费者感知信息不对称,感知移动商务技术不确定性、移动增值服务的无形性等三个前因变量分别对消费者感知风险各维度的作用。结果表明消费者感知信息不对称对消费者感知隐私风险、财务风险、功能风险、心理风险和时间风险均有显著的正相关作用;消费者感知技术不确定性仅对感知功能风险、感知财务风险和感知时间风险有显著的正相关作用;而增值服务的无形性则对除感知财务风险之外的其他风险维度均有显著的正相关作用。研究表明增值服务的信息不透明是消费者感知风险的主要来源,另外消费者对移动技术缺乏了解和技术本身的不确定性也会增加消费者感知风险。研究结论为相关企业采取措施降低消费者感知风险,促进移动增值服务的接受提供理论依据。  相似文献   

18.
The authors of this article have developed six probabilistic causal models for critical risks in tunnel works. The details of the models' development and evaluation were reported in two earlier publications of this journal. Accordingly, as a remaining step, this article is focused on the investigation into the use of these models in a real case study project. The use of the models is challenging given the need to provide information on risks that usually are both project and context dependent. The latter is of particular concern in underground construction projects. Tunnel risks are the consequences of interactions between site‐ and project‐ specific factors. Large variations and uncertainties in ground conditions as well as project singularities give rise to particular risk factors with very specific impacts. These circumstances mean that existing risk information, gathered from previous projects, is extremely difficult to use in other projects. This article considers these issues and addresses the extent to which prior risk‐related knowledge, in the form of causal models, as the models developed for the investigation, can be used to provide useful risk information for the case study project. The identification and characterization of the causes and conditions that lead to failures and their interactions as well as their associated probabilistic information is assumed to be risk‐related knowledge in this article. It is shown that, irrespective of existing constraints on using information and knowledge from past experiences, construction risk‐related knowledge can be transferred and used from project to project in the form of comprehensive models based on probabilistic‐causal relationships. The article also shows that the developed models provide guidance as to the use of specific remedial measures by means of the identification of critical risk factors, and therefore they support risk management decisions. Similarly, a number of limitations of the models are discussed.  相似文献   

19.
Jamie Baxter 《Risk analysis》2011,31(5):847-865
Risk perception and the cultural theory of risk have often been contrasted in relation to risk‐related policy making; however, the local context in which risks are experienced, an important component of everyday decision making, remains understudied. What is unclear is the extent to which localized community beliefs and behaviors depend on larger belief systems about risk (i.e., worldviews). This article reports on a study designed to understand the relative importance of health risk perceptions (threat of harm); risk‐related worldviews (cultural biases); and the experiences of local context (situated risk) for predicting risk‐related policy preferences regarding cosmetic pesticides. Responses to a random telephone questionnaire are used to compare residents’ risk perceptions, cultural biases, and pesticide bylaw preferences in Calgary (Alberta), Halifax (Nova Scotia), and London (Ontario), Canada. Logistic regression shows that the most important determinants of pesticide bylaw preference are risk perception, lack of benefit, and pesticide “abstinence.” Though perception of health risk is the best single predictor of differences in bylaw preferences, social factors such as gender and situated risk factors like conflict over chemical pesticides, are also important. Though cultural biases are not important predictors of pesticide bylaw preference, as in other studies, they are significant predictors of health risk perception. Pesticide bylaw preference is therefore more than just a health risk perception or worldview issue; it is also about how health risk becomes situated—contextually—in the experiences of residents’ everyday lives.  相似文献   

20.
Book Reviews     
《Risk analysis》1992,12(4):623-628
Books are reviewed in this article:
Monitoring Human Tissues for Toxic Substances By the Committee on National Monitoring of Human Tissues, Board on Environmental Studies and Toxicology, and Commission on Life Sciences Washington, D.C: National Academy Press
Drought and Natural Resources Management in the United States: Impacts and Implications of the 1987-89 Drought By William E. Riebsame, Stanley A. Changnon, Jr., and Thomas R. Karl Boulder
Groundwater Chemicals Desk Reference By John H. Montgomery and Linda M. Welkom
Probability Is All We Have: Uncertainties, Delays and Environmental Policy Making By James K. Hammit
Sharing Environmental Risks: How to Control Governments'Losses in Natural Disasters By Raymond J. Burby Boulder
Environmental Change in Iceland: Past and Present Edited by Judith K. Maizels and Chris Caseldine Boston
Uncertainty and Quality in Science for Policy By Silvio O. Funtowicz and Jerome R. Ravetz Boston
Injury and Litigation Prevention: Theory and Practice By Stanley H. Freeman
Engineering Risks: Evaluation and Valuation By Ulrich Hauptmanns and Wolfgang Werner
Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis By M. Granger Morgan and Max Henrion with Mitchell Small
Introduction to Modeling of Transport Phenomena in Porous Media By Jacob Bear and Yehuda Bachmat Boston
Statistics in Toxicology Edited by Daniel Krewski and Claire Franklin
Robin K. White Vicki G. Vest The Toxicity of Anticancer Drugs Edited by Garth Powis and Miles P. Hacker
W. Michele Simmons Curtis C. Travis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号