首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 3 毫秒
1.
Modern Statistics for Spatial Point Processes*   总被引:1,自引:0,他引:1  
Abstract. We summarize and discuss the current state of spatial point process theory and directions for future research, making an analogy with generalized linear models and random effect models, and illustrating the theory with various examples of applications. In particular, we consider Poisson, Gibbs and Cox process models, diagnostic tools and model checking, Markov chain Monte Carlo algorithms, computational methods for likelihood-based inference, and quick non-likelihood approaches to inference.  相似文献   

2.
This paper describes a technique for computing approximate maximum pseudolikelihood estimates of the parameters of a spatial point process. The method is an extension of Berman & Turner's (1992) device for maximizing the likelihoods of inhomogeneous spatial Poisson processes. For a very wide class of spatial point process models the likelihood is intractable, while the pseudolikelihood is known explicitly, except for the computation of an integral over the sampling region. Approximation of this integral by a finite sum in a special way yields an approximate pseudolikelihood which is formally equivalent to the (weighted) likelihood of a loglinear model with Poisson responses. This can be maximized using standard statistical software for generalized linear or additive models, provided the conditional intensity of the process takes an 'exponential family' form. Using this approach a wide variety of spatial point process models of Gibbs type can be fitted rapidly, incorporating spatial trends, interaction between points, dependence on spatial covariates, and mark information.  相似文献   

3.
Abstract. We introduce a flexible spatial point process model for spatial point patterns exhibiting linear structures, without incorporating a latent line process. The model is given by an underlying sequential point process model. Under this model, the points can be of one of three types: a ‘background point’ an ‘independent cluster point’ or a ‘dependent cluster point’. The background and independent cluster points are thought to exhibit ‘complete spatial randomness’, whereas the dependent cluster points are likely to occur close to previous cluster points. We demonstrate the flexibility of the model for producing point patterns with linear structures and propose to use the model as the likelihood in a Bayesian setting when analysing a spatial point pattern exhibiting linear structures. We illustrate this methodology by analysing two spatial point pattern datasets (locations of bronze age graves in Denmark and locations of mountain tops in Spain).  相似文献   

4.
In the existing statistical literature, the almost default choice for inference on inhomogeneous point processes is the most well‐known model class for inhomogeneous point processes: reweighted second‐order stationary processes. In particular, the K‐function related to this type of inhomogeneity is presented as the inhomogeneous K‐function. In the present paper, we put a number of inhomogeneous model classes (including the class of reweighted second‐order stationary processes) into the common general framework of hidden second‐order stationary processes, allowing for a transfer of statistical inference procedures for second‐order stationary processes based on summary statistics to each of these model classes for inhomogeneous point processes. In particular, a general method to test the hypothesis that a given point pattern can be ascribed to a specific inhomogeneous model class is developed. Using the new theoretical framework, we reanalyse three inhomogeneous point patterns that have earlier been analysed in the statistical literature and show that the conclusions concerning an appropriate model class must be revised for some of the point patterns.  相似文献   

5.
We propose a new summary statistic for inhomogeneous intensity‐reweighted moment stationarity spatio‐temporal point processes. The statistic is defined in terms of the n‐point correlation functions of the point process, and it generalizes the J‐function when stationarity is assumed. We show that our statistic can be represented in terms of the generating functional and that it is related to the spatio‐temporal K‐function. We further discuss its explicit form under some specific model assumptions and derive ratio‐unbiased estimators. We finally illustrate the use of our statistic in practice. © 2014 Board of the Foundation of the Scandinavian Journal of Statistics  相似文献   

6.
We consider the combination of path sampling and perfect simulation in the context of both likelihood inference and non‐parametric Bayesian inference for pairwise interaction point processes. Several empirical results based on simulations and analysis of a data set are presented, and the merits of using perfect simulation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号