首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
To estimate the critical dose of lead inducing anemia in humans, the effects of lead on hemoglobin (Hb) and hematocrit (Hct) levels and red blood cell (RBC) count were examined in 388 male lead-exposed workers with blood lead (BPb) levels of 0.05-5.5 (mean 1.3) micromol/L by using the benchmark dose (BMD) approach. The BPb level was significantly related to Hb (regression coefficient beta=-0.276), RBC (beta=-11.35), and Hct (beta=-0.563) among the workers (p < 0.001) when controlling for age and working status. The average BPb levels were significantly higher in the workers with anemia (1.85 micromol/L), based on the WHO criteria, than in those without anemia (1.26 micromol/L). The benchmark dose levels of BPb (i.e., lower 95% confidence limits of BMD), calculated from the K-power model set at an abnormal probability of 5% in unexposed workers and an excess risk of 5% in exposed workers were estimated to be 0.94 micromol/L (19.5 microg/dl) for Hb, 0.94 micromol/L (19.4 microg/dl) for RBC, and 1.43 micromol/L (29.6 microg/dl) for Hct. These findings suggest that reduction in hematopoietic indicators may be initiated at BPbs below the level currently considered without effect.  相似文献   

2.
Estimation of benchmark doses (BMDs) in quantitative risk assessment traditionally is based upon parametric dose‐response modeling. It is a well‐known concern, however, that if the chosen parametric model is uncertain and/or misspecified, inaccurate and possibly unsafe low‐dose inferences can result. We describe a nonparametric approach for estimating BMDs with quantal‐response data based on an isotonic regression method, and also study use of corresponding, nonparametric, bootstrap‐based confidence limits for the BMD. We explore the confidence limits’ small‐sample properties via a simulation study, and illustrate the calculations with an example from cancer risk assessment. It is seen that this nonparametric approach can provide a useful alternative for BMD estimation when faced with the problem of parametric model uncertainty.  相似文献   

3.
Effects of Exposure Imprecision on Estimation of the Benchmark Dose   总被引:1,自引:0,他引:1  
In regression analysis failure to adjust for imprecision in the exposure variable is likely to lead to underestimation of the exposure effect. However, the consequences of exposure error for determination of safe doses of toxic substances have so far not received much attention. The benchmark approach is one of the most widely used methods for development of exposure limits. An important advantage of this approach is that it can be applied to observational data. However, in this type of data, exposure markers are seldom measured without error. It is shown that, if the exposure error is ignored, then the benchmark approach produces results that are biased toward higher and less protective levels. It is therefore important to take exposure measurement error into account when calculating benchmark doses. Methods that allow this adjustment are described and illustrated in data from an epidemiological study on the health effects of prenatal mercury exposure.  相似文献   

4.
The BMD (benchmark dose) method that is used in risk assessment of chemical compounds was introduced by Crump (1984) and is based on dose-response modeling. To take uncertainty in the data and model fitting into account, the lower confidence bound of the BMD estimate (BMDL) is suggested to be used as a point of departure in health risk assessments. In this article, we study how to design optimum experiments for applying the BMD method for continuous data. We exemplify our approach by considering the class of Hill models. The main aim is to study whether an increased number of dose groups and at the same time a decreased number of animals in each dose group improves conditions for estimating the benchmark dose. Since Hill models are nonlinear, the optimum design depends on the values of the unknown parameters. That is why we consider Bayesian designs and assume that the parameter vector has a prior distribution. A natural design criterion is to minimize the expected variance of the BMD estimator. We present an example where we calculate the value of the design criterion for several designs and try to find out how the number of dose groups, the number of animals in the dose groups, and the choice of doses affects this value for different Hill curves. It follows from our calculations that to avoid the risk of unfavorable dose placements, it is good to use designs with more than four dose groups. We can also conclude that any additional information about the expected dose-response curve, e.g., information obtained from studies made in the past, should be taken into account when planning a study because it can improve the design.  相似文献   

5.
An occupational risk assessment for manganese (Mn) was performed based on benchmark dose analysis of data from two epidemiological studies providing dose-response information regarding the potential neurological effects of exposure to airborne Mn below the current Occupational Safety and Health Administration (OSHA) Permissible Exposure Level (PEL) of 5 mg Mn/m3. Based on a review of the scientific evidence regarding the toxicity of Mn, it was determined that the most appropriate measure of exposure to airborne Mn for the subclinical effects measured in these studies is recent (rather than historical or cumulative) concentration of Mn in respirable (rather than total) particulate. For each of the studies analyzed, the individual exposure and response data from the original study had been made available by the investigators. From these two studies benchmark concentrations calculated for eight endpoints ranged from 0.09 to 0.27 mg Mn/m3. From our evaluation of these results, and considering the fact that the subtle, subclinical effects represented by the neurological endpoints tested in these studies do not represent material impairment, we believe an appropriate occupational exposure guideline for manganese would be in the range of 0.1 to 0.3 mg Mn/m3, based on the respirable particulate fraction only, and expressed as an 8-hour time-weighted average.  相似文献   

6.
Various methods exist to calculate confidence intervals for the benchmark dose in risk analysis. This study compares the performance of three such methods in fitting nonlinear dose-response models: the delta method, the likelihood-ratio method, and the bootstrap method. A data set from a developmental toxicity test with continuous, ordinal, and quantal dose-response data is used for the comparison of these methods. Nonlinear dose-response models, with various shapes, were fitted to these data. The results indicate that a few thousand runs are generally needed to get stable confidence limits when using the bootstrap method. Further, the bootstrap and the likelihood-ratio method were found to give fairly similar results. The delta method, however, resulted in some cases in different (usually narrower) intervals, and appears unreliable for nonlinear dose-response models. Since the bootstrap method is more time consuming than the likelihood-ratio method, the latter is more attractive for routine dose-response analysis. In the context of a probabilistic risk assessment the bootstrap method has the advantage that it directly links to Monte Carlo analysis.  相似文献   

7.
8.
The aim of this study is to estimate the reference level of lifetime cadmium intake (LCd) as the benchmark doses (BMDs) and their 95% lower confidence limits (BMDLs) for various renal effects by applying a hybrid approach. The participants comprised 3,013 (1,362 men and 1,651 women) and 278 (129 men and 149 women) inhabitants of the Cd‐polluted and nonpolluted areas, respectively, in the environmentally exposed Kakehashi River basin. Glucose, protein, aminonitrogen, metallothionein, and β2‐microglobulin in urine were measured as indicators of renal dysfunction. The BMD and BMDL that corresponded to an additional risk of 5% were calculated with background risk at zero exposure set at 5%. The obtained BMDLs of LCd were 3.7 g (glucose), 3.2 g (protein), 3.7 g (aminonitrogen), 1.7 g (metallothionein), and 1.8 g (β2‐microglobulin) in men and 2.9 g (glucose), 2.5 g (protein), 2.0 g (aminonitrogen), 1.6 g (metallothionein), and 1.3 g (β2‐microglobulin) in women. The lowest BMDL was 1.7 g (metallothionein) and 1.3 g (β2‐microglobulin) in men and women, respectively. The lowest BMDL of LCd (1.3 g) was somewhat lower than the representative threshold LCd (2.0 g) calculated in the previous studies. The obtained BMDLs may contribute to further discussion on the health risk assessment of cadmium exposure.  相似文献   

9.
Mitchell J. Small 《Risk analysis》2011,31(10):1561-1575
A methodology is presented for assessing the information value of an additional dosage experiment in existing bioassay studies. The analysis demonstrates the potential reduction in the uncertainty of toxicity metrics derived from expanded studies, providing insights for future studies. Bayesian methods are used to fit alternative dose‐response models using Markov chain Monte Carlo (MCMC) simulation for parameter estimation and Bayesian model averaging (BMA) is used to compare and combine the alternative models. BMA predictions for benchmark dose (BMD) are developed, with uncertainty in these predictions used to derive the lower bound BMDL. The MCMC and BMA results provide a basis for a subsequent Monte Carlo analysis that backcasts the dosage where an additional test group would have been most beneficial in reducing the uncertainty in the BMD prediction, along with the magnitude of the expected uncertainty reduction. Uncertainty reductions are measured in terms of reduced interval widths of predicted BMD values and increases in BMDL values that occur as a result of this reduced uncertainty. The methodology is illustrated using two existing data sets for TCDD carcinogenicity, fitted with two alternative dose‐response models (logistic and quantal‐linear). The example shows that an additional dose at a relatively high value would have been most effective for reducing the uncertainty in BMA BMD estimates, with predicted reductions in the widths of uncertainty intervals of approximately 30%, and expected increases in BMDL values of 5–10%. The results demonstrate that dose selection for studies that subsequently inform dose‐response models can benefit from consideration of how these models will be fit, combined, and interpreted.  相似文献   

10.
Delays in evoked potential latencies were observed at increased exposures to methylmercury from seafood in two cohorts of children. Because this outcome parameter appeared to be virtually independent of confounders, including cultural differences, a joint analysis of benchmark doses was carried out. Comparable cohort members included 382 Faroese and 113 Madeiran children without middle ear infection or neurological disease at age seven years. Maternal hair-mercury concentrations at parturition in the Faroese cohort ranged from 0.6 to 39.1 microg/g (geometric average, 4.49 microg/g). In Madeira, mothers who had not changed their diet since pregnancy had current hair-mercury concentrations ranging from 1.1 to 54.4 microg/g (geometric average 10.14 microg/g). The mercury-associated delay in peak III latencies at two frequencies (20 and 40 Hz) showed similar regression equations in the two groups of children, and benchmark dose calculations were therefore carried out for the two groups separately and jointly. For a doubling of a 5% prevalence of abnormal results of the peak III latencies at 40 Hz in a linear dose-response model, the benchmark dose for the maternal hair-mercury concentration was 8.79 microg/g for the Faroese children; 8.04 microg/g for the Madeiran children; and 9.46 microg/g for both groups. Results were similar for the 20 Hz condition. Benchmark dose results were substantially lower using a logarithmic or square root curve function, although the difference in fit between the curves was far from statistically significant. The benchmark results using evoked potential latencies are in close agreement with results based on neuropsychological test performance.  相似文献   

11.
This paper presents benchmark (BMD) calculations and additional regression analyses of data from a study in which scores from 26 scholastic and psychological tests administered to 237 6- and 7-year-old New Zealand children were correlated with the mercury concentration in their mothers' hair during pregnancy. The original analyses of five test scores found an association between high prenatal mercury exposure and decreased test performance, using category variables for mercury exposure. Our regression analyses, which utilized the actual hair mercury level, did not find significant associations between mercury and children's test scores. However, this finding was highly influenced by a single child whose mother's mercury hair level (86 mgkg) was more than four times that of any other mother. When that child was omitted, results were more indicative of a mercury effect and scores on six tests were significantly associated with the mothers' hair mercury level. BMDs calculated from five tests ranged from 32 to 73 mgkg hair mercury, and corresponding BMDLs (95% lower limits on BMDs) ranged from 17 to 24 mgkg. When the child with the highest mercury level was omitted, BMDs ranged from 13 to 21 mgkg, and corresponding BMDLs ranged from 7.4 to 10 mgkg.  相似文献   

12.
The objective of this study was to calculate benchmark durations and lower 95% confidence limits for benchmark durations of working hours associated with subjective fatigue symptoms by applying the benchmark dose approach while adjusting for job‐related stress using multiple logistic regression analyses. A self‐administered questionnaire was completed by 3,069 male and 412 female daytime workers (age 18–67 years) in a Japanese steel company. The eight dependent variables in the Cumulative Fatigue Symptoms Index were decreased vitality, general fatigue, physical disorders, irritability, decreased willingness to work, anxiety, depressive feelings, and chronic tiredness. Independent variables were daily working hours, four subscales (job demand, job control, interpersonal relationship, and job suitability) of the Brief Job Stress Questionnaire, and other potential covariates. Using significant parameters for working hours and those for other covariates, the benchmark durations of working hours were calculated for the corresponding Index property. Benchmark response was set at 5% or 10%. Assuming a condition of worst job stress, the benchmark duration/lower 95% confidence limit for benchmark duration of working hours per day with a benchmark response of 5% or 10% were 10.0/9.4 or 11.7/10.7 (irritability) and 9.2/8.9 or 10.4/9.8 (chronic tiredness) in men and 8.9/8.4 or 9.8/8.9 (chronic tiredness) in women. The threshold amounts of working hours for fatigue symptoms under the worst job‐related stress were very close to the standard daily working hours in Japan. The results strongly suggest that special attention should be paid to employees whose working hours exceed threshold amounts based on individual levels of job‐related stress.  相似文献   

13.
Developmental anomalies induced by toxic chemicals may be identified using laboratory experiments with rats, mice or rabbits. Multinomial responses of fetuses from the same mother are often positively correlated, resulting in overdispersion relative to multinomial variation. In this article, a simple data transformation based on the concept of generalized design effects due to Rao-Scott is proposed for dose-response modeling of developmental toxicity. After scaling the original multinomial data using the average design effect, standard methods for analysis of uncorrected multinomial data can be applied. Benchmark doses derived using this approach are comparable to those obtained using generalized estimating equations with an extended Dirichlet-trinomial covariance function to describe the dispersion of the original data. This empirical agreement, coupled with a large sample theoretical justification of the Rao-Scott transformation, confirms the applicability of the statistical methods proposed in this article for developmental toxicity risk assessment.  相似文献   

14.
We describe a quantitative methodology to characterize the vulnerability of U.S. urban centers to terrorist attack, using a place-based vulnerability index and a database of terrorist incidents and related human casualties. Via generalized linear statistical models, we study the relationships between vulnerability and terrorist events, and find that our place-based vulnerability metric significantly describes both terrorist incidence and occurrence of human casualties from terrorist events in these urban centers. We also introduce benchmark analytic technologies from applications in toxicological risk assessment to this social risk/vulnerability paradigm, and use these to distinguish levels of high and low urban vulnerability to terrorism. It is seen that the benchmark approach translates quite flexibly from its biological roots to this social scientific archetype.  相似文献   

15.
The benchmark dose (BMD) is defined as the dose that corresponds to a specific change in an adverse response compared to the response in unexposed subjects, and the lower 95% confidence limit is termed the benchmark dose level (BMDL). In this study, the threshold of daily ethanol intake affecting blood pressure was calculated by both the BMD approach and multiple logistic regression analysis to clarify the relation between the BMDL and no-observed-adverse-effect level (NOAEL). Systolic and diastolic blood pressures (SBP and DBP) and daily ethanol intake were explored in 1,100 Japanese salesmen. The SBP and DBP were positively related to daily ethanol intake (p < 0.001) when adjusting for possible confounders such as age, body mass index, and smoking status. The adjusted risk for hypertension (SBP >or= 140 mmHg or DBP >or= 90 mmHg) increased significantly when daily ethanol intake exceeded 60 g/day, and the categorical dose of interest was 60.1-90 g/day. The BMDL and BMD of ethanol intake for increased SBP and DBP were estimated to be approximately 60 and 75 g/day, respectively. These findings suggest that the BMDL and BMD correspond to the NOAEL and lowest-observed-adverse-effect level, respectively, if the sample number of clinical data is large enough to confirm the dose-response association.  相似文献   

16.
Recent advances in risk assessment have led to the development of joint dose-response models to describe prenatal death and fetal malformation rates in developmental toxicity experiments. These models can be used to estimate the effective dose corresponding to a 5% excess risk for both these toxicological endpoints, as well as for overall toxicity. In this article, we develop optimal experimental designs for the estimation of the effective dose for developmental toxicity using joint Weibull dose-response models for prenatal death and fetal malformation. Based on an extended series of developmental studies, near-optimal designs for prenatal death, malformation, and overall toxicity were found to involve three dose groups: an unexposed control group, a high dose equal to the maximum tolerated dose, and a low dose above or comparable to the effective dose. The effect on the optimal designs of changing the number of implants and the degree of intra-litter correlation is also investigated. Although the optimal design has only three dose groups in most cases, practical considerations involving model lack of fit and estimation of the shape of the dose-response curve suggest that, in practice, suboptimal designs with more than three doses will often be preferred.  相似文献   

17.
U.S. Environment Protection Agency benchmark doses for dichotomous cancer responses are often estimated using a multistage model based on a monotonic dose‐response assumption. To account for model uncertainty in the estimation process, several model averaging methods have been proposed for risk assessment. In this article, we extend the usual parameter space in the multistage model for monotonicity to allow for the possibility of a hormetic dose‐response relationship. Bayesian model averaging is used to estimate the benchmark dose and to provide posterior probabilities for monotonicity versus hormesis. Simulation studies show that the newly proposed method provides robust point and interval estimation of a benchmark dose in the presence or absence of hormesis. We also apply the method to two data sets on carcinogenic response of rats to 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin.  相似文献   

18.
In order to determine the threshold amount of alcohol consumption for blood pressure, we calculated the benchmark dose (BMD) of alcohol consumption and its 95% lower confidence interval (BMDL) in Japanese workers. The subjects consisted of 4,383 males and 387 females in a Japanese steel company. The target variables were systolic, diastolic, and mean arterial pressures. The effects of other potential covariates such as age and body mass index were adjusted by including these covariates in the multiple linear regression models. In male workers, BMD/BMDL for alcohol consumption (g/week) at which the probability of an adverse response was estimated to increase by 5% relative to no alcohol consumption, were 396/315 (systolic blood pressure), 321/265 (diastolic blood pressure), and 326/269 (mean arterial pressures). These values were based on significant regression coefficients of alcohol consumption. In female workers, BMD/BMDL for alcohol consumption based on insignificant regression coefficients were 693/134 (systolic blood pressure), 199/90 (diastolic blood pressure), and 267/77 (mean arterial pressure). Therefore, BMDs/BMDLs in males were more informative than those in females as there was no significant relationship between alcohol and blood pressure in females. The threshold amount of alcohol consumption determined in this study provides valuable information for preventing alcohol-induced hypertension.  相似文献   

19.
Human populations are exposed to environmental carcinogens in both indoor and outdoor atmospheres. Recent studies indicate that pollutant concentrations are generally higher in indoor atmospheres than in outdoor. Environmental pollutants that occur in indoor air from a variety of sources include radon, asbestos, organic and inorganic compounds, and certain particles (e.g., tobacco smoke). Some of the gases or vapors are adsorbed on suspended particulate matter, whereas others exist entirely in the gas phase or are distributed between the latter and a particle-bound state. Because of differences in chemical and physical properties, each class of carcinogens generally requires different sampling and analytical methods. In addition, a single indoor environment may contain a wide variety of air pollutants from different sources. Unfortunately, no single best approach currently exists for the quantitative determination of such complex mixtures and, for practical reasons, only the more toxic or the more abundant pollutants are usually measured. This paper summarizes the currently available monitoring methods for selected environmental pollutants found in indoor atmospheres. In addition, some possible sources for those pollutants are identified.  相似文献   

20.
The ultimate goal of the research reported in this series of three articles is to derive distributions of doses of selected environmental tobacco smoke (ETS)-related chemicals for nonsmoking workers. This analysis uses data from the 16-City Study collected with personal monitors over the course of one workday in workplaces where smoking occurred. In this article, we describe distributions of ETS chemical concentrations and the characteristics of those distributions (e.g., whether the distribution was log normal for a given constituent) for the workplace exposure. Next, we present population parameters relevant for estimating dose distributions and the methods used for estimating those dose distributions. Finally, we derive distributions of doses of selected ETS-related constituents obtained in the workplace for people in smoking work environments. Estimating dose distributions provided information beyond the usual point estimate of dose and showed that the preponderance of individuals exposed to ETS in the workplace were exposed at the low end of the dose distribution curve. The results of this analysis include estimations of hourly maxima and time-weighted average (TWA) doses of nicotine from workplace exposures to ETS (extrapolated from 1 day to 1 week) and doses derived from modeled lung burdens of ultraviolet-absorbing particulate matter (UVPM) and solanesol resulting from workplace exposures to ETS (extrapolated from 1 day to 1 year).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号