首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several recurrence relations and identities available for single and product moments of order1 statistics in a sample size n from an arbitrary continuous distribution are extended for the discrete case,, Making use of these recurrence relations it is shown that it is sufficient to evaluate just two single moments and (n-l)/2 product moments when n is odd and two single moments and {n-2)/2 product moments when n is even, in order to evaluate the first, second and product moments of order statistics in a sample of size n drawn from an arbitrary discrete distribution, given these moments in samples of sizes n-1 and less.. A series representation for the product moments of order statistics is derived.. Besides enabling us to obtain an exact and explicit expression for the product moments of order statistics from the geometric distribution, it. makes the computation of the product moments of order statistics from other discrete distributions easy too.  相似文献   

2.
Given a probability measure on the unit square, the measure of the region under an empirical P – P -plot defines a two-sample rank statistic. Instances include trimmed and censored versions of the Mann–Whitney–Wilcoxon statistic and a class of statistics with applications in the analysis of receiver operating characteristic (ROC) curves. A large sample distribution for such a statistic is obtained, which is valid under sampling from general populations. Explicit results are presented for comparing arbitrary quantile segments of two populations. The results are not restricted to continuous data and incorporate adjustments for tied values in the discrete case. A multivariate version of the large sample distribution extends the class of tractable statistics in ROC analysis and facilitates the use of methods based on partial areas when the data are discrete.  相似文献   

3.
Progressively Type-II right censored order statistics from continuous distributions have been studied rather extensively in the literature; see Balakrishnan and Aggarwala [2000. Progressive Censoring: Theory, Methods and Applications. Birkhäuser, Boston]. In this paper, we derive the joint and marginal distributions of progressively Type-II right censored order statistics from discrete distributions. We then use these distributions to show the non-Markovian property as well as to discuss some properties in the special case of the geometric distribution.  相似文献   

4.
5.
The order statistics from a sample of size n≥3 from a discrete distribution form a Markov chain if and only if the parent distribution is supported by one or two points. More generally, a necessary and sufficient condition for the order statistics to form a Markov chain for (n≥3) is that there does not exist any atom x0 of the parent distribution F satisfying F(x0-)>0 and F(x0)<1. To derive this result a formula for the joint distribution of order statistics is proved, which is of an interest on its own. Many exponential characterizations implicitly assume the Markov property. The corresponding putative geometric characterizations cannot then be reasonably expected to obtain. Some illustrative geometric characterizations are discussed.  相似文献   

6.
Discrete associated kernels method and extensions   总被引:1,自引:0,他引:1  
Discrete kernel estimation of a probability mass function (p.m.f.), often mentioned in the literature, has been far less investigated in comparison with continuous kernel estimation of a probability density function (p.d.f.). In this paper, we are concerned with a general methodology of discrete kernels for smoothing a p.m.f. f. We give a basic of mathematical tools for further investigations. First, we point out a generalizable notion of discrete associated kernel which is defined at each point of the support of f and built from any parametric discrete probability distribution. Then, some properties of the corresponding estimators are shown, in particular pointwise and global (asymptotical) properties. Other discrete kernels are constructed from usual discrete probability distributions such as Poisson, binomial and negative binomial. For small samples sizes, underdispersed discrete kernel estimators are more interesting than the empirical estimator; thus, an importance of discrete kernels is illustrated. The choice of smoothing bandwidth is classically investigated according to cross-validation and, novelly, to excess of zeros methods. Finally, a unification way of this method concerning the general probability function is discussed.  相似文献   

7.
We study distributional properties of generalized order statistics (gos) related by a random shift or scaling scheme in the continuous and discrete case, respectively. In the continuous case, we obtain new characterizations of distributions relating non-neighbouring gos extending some results given in the literature for the neighbouring cases. On the other hand, in the discrete case, we investigate the existence and uniqueness of a discrete parent distribution supported on the integers whose gos are related by a random translation.  相似文献   

8.
Whittemore (1981) proposed an approach for calculating the sample size needed to test hypotheses with specified significance and power against a given alternative for logistic regression with small response probability. Based on the distribution of covariate, which could be either discrete or continuous, this approach first provides a simple closed-form approximation to the asymptotic covariance matrix of the maximum likelihood estimates, and then uses it to calculate the sample size needed to test a hypothesis about the parameter. Self et al. (1992) described a general approach for power and sample size calculations within the framework of generalized linear models, which include logistic regression as a special case. Their approach is based on an approximation to the distribution of the likelihood ratio statistic. Unlike the Whittemore approach, their approach is not limited to situations of small response probability. However, it is restricted to models with a finite number of covariate configurations. This study compares these two approaches to see how accurate they would be for the calculations of power and sample size in logistic regression models with various response probabilities and covariate distributions. The results indicate that the Whittemore approach has a slight advantage in achieving the nominal power only for one case with small response probability. It is outperformed for all other cases with larger response probabilities. In general, the approach proposed in Self et al. (1992) is recommended for all values of the response probability. However, its extension for logistic regression models with an infinite number of covariate configurations involves an arbitrary decision for categorization and leads to a discrete approximation. As shown in this paper, the examined discrete approximations appear to be sufficiently accurate for practical purpose.  相似文献   

9.
A possible model for communication traffic is that the amount of work arriving in successive time intervals is jointly Gaussian. This model seems to fly in the face of certain obvious and characteristic features of real traffic, such as the fact that it arrives in discrete bundles and that there is often a non-zero probability of zero traffic in a time interval of significant length. Also, the Gaussian model allows the possibility of negative traffic, which is clearly unrealistic. As the number of sources of traffic increases and the quantity of traffic in communication networks increases, however, under suitable conditions, the deviation between the distribution of real traffic and the Gaussian model will become less. The appropriate concept of topology/convergence must be used or the result will be meaningless. To identify an appropriate convergence framework, the performance statistics associated with a network, namely cell loss, delay, and, in general, statistics which can be expressed in terms of the network buffers which accumulate in the network may be used as a guide. Weak convergence of probability measures has the property that when the probability measures of traffic processes converge to that of a certain traffic process, the distribution of their performance characteristics, such as buffer occupancy, also converges in the same sense to the performance of the system to which they were converging. Real traffic appears, unambiguously, to be long-range dependent. There is an interesting example where aggregation of traffic does not seem to produce convergence to the queueing behaviour expected of Gaussian traffic, at any rate the tail characteristics do not converge to those of the Gaussian result. However, in Section 4, it is shown that if the variance of one traffic stream is finite and as a proportion of the variance of the whole traffic volume tends to zero, then the traffic in networks can be expected to converge to Gaussian in the sense of weak convergence of probability measures. It is then shown that, as a consequence, the traffic in the paradoxical example does converge in this sense also. The paradox is explained by noticing that asymptotic tail behaviour may become increasingly irrelevant as traffic is aggregated. This fact should sound a warning concerning the cavalier use of tail-behaviour as an indication of performance. Long-range dependence apparently places no inhibition on convergence to Gaussian behaviour. Convergence to a Gaussian distribution of increasing aggregates of traffic is only shown to occur for discrete time models. In fact it appears that continuous time Gaussian models do not share this property and their use for modelling real traffic may be problematic.  相似文献   

10.
In this note we show that the Markov Property holds for order statistics while sampling from a discrete parent population if and only if the population has at most two distinct units. This disproves the claim of Gupta and Gupta (1981) that for geometric parent, the order statistics form a Markov chain.  相似文献   

11.
The most common strategy for comparing two independent groups is in terms of some measure of location intended to reflect the typical observation. However, it can be informative and important to compare the lower and upper quantiles as well, but when there are tied values, extant techniques suffer from practical concerns reviewed in the paper. For the special case where the goal is to compare the medians, a slight generalization of the percentile bootstrap method performs well in terms of controlling Type I errors when there are tied values [Wilcox RR. Comparing medians. Comput. Statist. Data Anal. 2006;51:1934–1943]. But our results indicate that when the goal is to compare the quartiles, or quantiles close to zero or one, this approach is highly unsatisfactory when the quantiles are estimated using a single order statistic or a weighted average of two order statistics. The main result in this paper is that when using the Harrell–Davis estimator, which uses all of the order statistics to estimate a quantile, control over the Type I error probability can be achieved in simulations, even when there are tied values, provided the sample sizes are not too small. It is demonstrated that this method can also have substantially higher power than the distribution free method derived by Doksum and Sievers [Plotting with confidence: graphical comparisons of two populations. Biometrika 1976;63:421–434]. Data from two studies are used to illustrate the practical advantages of the method studied here.  相似文献   

12.
In this paper, we are interested in the joint distribution of two order statistics from overlapping samples. We give an explicit formula for the distribution of such a pair of random variables under the assumption that the parent distribution is absolutely continuous. We are also interested in the question to what extent conditional expectation of one of such order statistic given another determines the parent distribution. In particular, we provide a new characterization by linearity of regression of an order statistic from the extended sample given the one from the original sample, special case of which solves a problem explicitly stated in the literature. It appears that to describe the correct parent distribution it is convenient to use quantile density functions. In several other cases of regressions of order statistics we provide new results regarding uniqueness of the distribution in the sample.  相似文献   

13.
In this paper, a discrete counterpart of the general class of continuous beta-G distributions is introduced. A discrete analog of the beta generalized exponential distribution of Barreto-Souza et al. [2], as an important special case of the proposed class, is studied. This new distribution contains some previously known discrete distributions as well as two new models. The hazard rate function of the new model can be increasing, decreasing, bathtub-shaped and upside-down bathtub. Some distributional and moment properties of the new distribution as well as its order statistics are discussed. Estimation of the parameters is illustrated using the maximum likelihood method and, finally, the model with a real data set is examined.  相似文献   

14.
Elasticity (or elasticity function) is a new concept that allows us to characterize the probability distribution of any random variable in the same way as characteristic functions and hazard and reverse hazard functions do. Initially defined for continuous variables, it was necessary to extend the definition of elasticity and study its properties in the case of discrete variables. A first attempt to define discrete elasticity is seen in Veres-Ferrer and Pavía (2014a). This paper develops this definition and makes a comparative study of its properties, relating them to the properties shown by discrete hazard and reverse hazard, as both defined in Chechile (2011). Similar to continuous elasticity, one of the most interesting properties of discrete elasticity focuses on the rate of change that this undergoes throughout its support. This paper centers on the study of the rate of change and develops a set of properties that allows us to carry out a detailed analysis. Finally, it addresses the calculation of the elasticity for the resulting variable obtained from discretizing a continuous random variable, distinguishing whether its domain is in real positives or negatives.  相似文献   

15.
When estimating population quantiles via a random sample from an unknown continuous distribution function it is well known that a pair of order statistics may be used to set a confidence interval for any single desired, population quantile. In this paper the technique is generalized so that more than one pair of order statistics may be used to obtain simultaneous confidence intervals for the various quantiles that might be required. The generalization immediately extends to the problem of obtaining interval estimates for quantile intervals. Distributions of the ordered and unordered probability coverages of these confidence intervals are discussed as are the associated distributions of linear combinations of the coverages.  相似文献   

16.
Exact nonparametric inference based on ordinary Type-II right censored samples has been extended here to the situation when there are multiple samples with Type-II censoring from a common continuous distribution. It is shown that marginally, the order statistics from the pooled sample are mixtures of the usual order statistics with multivariate hypergeometric weights. Relevant formulas are then derived for the construction of nonparametric confidence intervals for population quantiles, prediction intervals, and tolerance intervals in terms of these pooled order statistics. It is also shown that this pooled-sample approach assists in achieving higher confidence levels when estimating large quantiles as compared to a single Type-II censored sample with same number of observations from a sample of comparable size. We also present some examples to illustrate all the methods of inference developed here.  相似文献   

17.
Abstract

In the area of goodness-of-fit there is a clear distinction between the problem of testing the fit of a continuous distribution and that of testing a discrete distribution. In all continuous problems the data is recorded with a limited number of decimals, so in theory one could say that the problem is always of a discrete nature, but it is a common practice to ignore discretization and proceed as if the data is continuous. It is therefore an interesting question whether in a given problem of test of fit, the “limited resolution” in the observed recorded values may be or may be not of concern, if the analysis done ignores this implied discretization. In this article, we address the problem of testing the fit of a continuous distribution with data recorded with a limited resolution. A measure for the degree of discretization is proposed which involves the size of the rounding interval, the dispersion in the underlying distribution and the sample size. This measure is shown to be a key characteristic which allows comparison, in different problems, of the amount of discretization involved. Some asymptotic results are given for the distribution of the EDF (empirical distribution function) statistics that explicitly depend on the above mentioned measure of degree of discretization. The results obtained are illustrated with some simulations for testing normality when the parameters are known and also when they are unknown. The asymptotic distributions are shown to be an accurate approximation for the true finite n distribution obtained by Monte Carlo. A real example from image analysis is also discussed. The conclusion drawn is that in the cases where the value of the measure for the degree of discretization is not “large”, the practice of ignoring discreteness is of no concern. However, when this value is “large”, the effect of ignoring discreteness leads to an exceded number of rejections of the distribution tested, as compared to what would be the number of rejections if no rounding is taking into account. The error made in the number of rejections might be huge.  相似文献   

18.
It is shown how various exact non-parametric inferences based on order statistics in one or two random samples can be generalized to situations with progressive type-II censoring, which is a kind of evolutionary right censoring. Ordinary type-II right censoring is a special case of such progressive censoring. These inferences include confidence intervals for a given parent quantile, prediction intervals for a given order statistic of a future sample, and related two-sample inferences based on exceedance probabilities. The proposed inferences are valid for any parent distribution with continuous distribution function. The key result is that each observable uncensored order statistic that becomes available with progressive type-II censoring can be represented as a mixture with known weights of underlying ordinary order statistics. The importance of this mixture representation lies in that various properties of such observable order statistics can be deduced immediately from well-known properties of ordinary order statistics.  相似文献   

19.
A two-parameter discrete gamma distribution is derived corresponding to the continuous two parameters gamma distribution using the general approach for discretization of continuous probability distributions. One parameter discrete gamma distribution is obtained as a particular case. A few important distributional and reliability properties of the proposed distribution are examined. Parameter estimation by different methods is discussed. Performance of different estimation methods are compared through simulation. Data fitting is carried out to investigate the suitability of the proposed distribution in modeling discrete failure time data and other count data.  相似文献   

20.
This paper is concerned with semiparametric discrete kernel estimators when the unknown count distribution can be considered to have a general weighted Poisson form. The estimator is constructed by multiplying the Poisson estimate with a nonparametric discrete kernel-type estimate of the Poisson weight function. Comparisons are then carried out with the ordinary discrete kernel probability mass function estimators. The Poisson weight function is thus a local multiplicative correction factor, and is considered as the uniform measure to detect departures from the equidispersed Poisson distribution. In this way, the effects of dispersion and zero-proportion with respect to the standard Poisson distribution are also minimized. This method of estimation is also applied to the weighted binomial form for the count distribution having a finite support. The proposed estimators, in addition to being simple, easy-to-implement and effective, also outperform the competing nonparametric and parametric estimators in finite-sample situations. Two examples illustrate this new semiparametric estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号