首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the estimation and variable selection for a partial linear single index model (PLSIM) when some linear covariates are not observed, but their ancillary variables are available. We use the semiparametric profile least-square based estimation procedure to estimate the parameters in the PLSIM after the calibrated error-prone covariates are obtained. Asymptotic normality for the estimators are established. We also employ the smoothly clipped absolute deviation (SCAD) penalty to select the relevant variables in the PLSIM. The resulting SCAD estimators are shown to be asymptotically normal and have the oracle property. Performance of our estimation procedure is illustrated through numerous simulations. The approach is further applied to a real data example.  相似文献   

2.
We develop a new methodology for determining the location and dynamics of brain activity from combined magnetoencephalography (MEG) and electroencephalography (EEG) data. The resulting inverse problem is ill‐posed and is one of the most difficult problems in neuroimaging data analysis. In our development we propose a solution that combines the data from three different modalities, magnetic resonance imaging (MRI), MEG and EEG, together. We propose a new Bayesian spatial finite mixture model that builds on the mesostate‐space model developed by Daunizeau & Friston [Daunizeau and Friston, NeuroImage 2007; 38, 67–81]. Our new model incorporates two major extensions: (i) We combine EEG and MEG data together and formulate a joint model for dealing with the two modalities simultaneously; (ii) we incorporate the Potts model to represent the spatial dependence in an allocation process that partitions the cortical surface into a small number of latent states termed mesostates. The cortical surface is obtained from MRI. We formulate the new spatiotemporal model and derive an efficient procedure for simultaneous point estimation and model selection based on the iterated conditional modes algorithm combined with local polynomial smoothing. The proposed method results in a novel estimator for the number of mixture components and is able to select active brain regions, which correspond to active variables in a high‐dimensional dynamic linear model. The methodology is investigated using synthetic data and simulation studies and then demonstrated on an application examining the neural response to the perception of scrambled faces. R software implementing the methodology along with several sample datasets are available at the following GitHub repository https://github.com/v2south/PottsMix . The Canadian Journal of Statistics 47: 688–711; 2019 © 2019 Statistical Society of Canada  相似文献   

3.
We postulate a spatiotemporal multilevel model and estimate using forward search algorithm and MLE imbedded into the backfitting algorithm. Forward search algorithm ensures robustness of the estimates by filtering the effect of temporary structural changes in the estimation of the group-level covariates, the individual-level covariates and spatial parameters. Backfitting algorithm provides computational efficiency of estimation procedure assuming an additive model. Simulation studies show that estimates are robust even in the presence of structural changes induced for example by epidemic outbreak. The model also produced robust estimates even for small sample and short time series common in epidemiological settings.  相似文献   

4.
Satellite remote-sensing is used to collect important atmospheric and geophysical data at various spatial resolutions, providing insight into spatiotemporal surface and climate variability globally. These observations are often plagued with missing spatial and temporal information of Earth''s surface due to (1) cloud cover at the time of a satellite passing and (2) infrequent passing of polar-orbiting satellites. While many methods are available to model missing data in space and time, in the case of land surface temperature (LST) from thermal infrared remote sensing, these approaches generally ignore the temporal pattern called the ‘diurnal cycle’ which physically constrains temperatures to peak in the early afternoon and reach a minimum at sunrise. In order to infill an LST dataset, we parameterize the diurnal cycle into a functional form with unknown spatiotemporal parameters. Using multiresolution spatial basis functions, we estimate these parameters from sparse satellite observations to reconstruct an LST field with continuous spatial and temporal distributions. These estimations may then be used to better inform scientists of spatiotemporal thermal patterns over relatively complex domains. The methodology is demonstrated using data collected by MODIS on NASA''s Aqua and Terra satellites over both Houston, TX and Phoenix, AZ USA.  相似文献   

5.
A spatiotemporal model is postulated and estimated using a procedure that infuses the forward search algorithm and maximum likelihood estimation into the backfitting framework. The forward search algorithm filters the effect of temporary structural change in the estimation of covariate and spatial parameters. Simulation studies illustrate capability of the method in producing robust estimates of the parameters even in the presence of structural change. The method provides good model fit even for small sample sizes in short time series data and good predictions for a wide range of lengths of contamination periods and levels of severity of contamination.  相似文献   

6.
A nested case–control (NCC) study is an efficient cohort-sampling design in which a subset of controls are sampled from the risk set at each event time. Since covariate measurements are taken only for the sampled subjects, time and efforts of conducting a full scale cohort study can be saved. In this paper, we consider fitting a semiparametric accelerated failure time model to failure time data from a NCC study. We propose to employ an efficient induced smoothing procedure for rank-based estimating method for regression parameters estimation. For variance estimation, we propose to use an efficient resampling method that utilizes the robust sandwich form. We extend our proposed methods to a generalized NCC study that allows a sampling of cases. Finite sample properties of the proposed estimators are investigated via an extensive stimulation study. An application to a tumor study illustrates the utility of the proposed method in routine data analysis.  相似文献   

7.
Spatial modeling of consumer response data has gained increased interest recently in the marketing literature. In this paper, we extend the (spatial) multi-scale model by incorporating both spatial and temporal dimensions in the dynamic multi-scale spatiotemporal modeling approach. Our empirical application with a US company’s catalog purchase data for the period 1997–2001 reveals a nested geographic market structure that spans geopolitical boundaries such as state borders. This structure identifies spatial clusters of consumers who exhibit similar spatiotemporal behavior, thus pointing to the importance of emergent geographic structure, emergent nested structure and dynamic patterns in multi-resolution methods. The multi-scale model also has better performance in estimation and prediction compared with several spatial and spatiotemporal models and uses a scalable and computationally efficient Markov chain Monte Carlo method that makes it suitable for analyzing large spatiotemporal consumer purchase datasets.KEYWORDS: Clustering, dynamic linear models, empirical Bayes methods, Markov chain Monte Carlo methods, multi-scale modeling, spatial models  相似文献   

8.
空间动态面板数据(SDPD)模型中被解释变量初值极易带有内生性,采用一般拟极大似然(QML)方法容易造成参数估计偏误,特别是当样本结构为n大T小的时候。鉴于此,本文在一般QML基础上,通过重塑误差项的方差-协方差矩阵,修正拟似然函数表达式,得到修正QML,进而估计短面板下含空间、时间、误差三类关联项的固定效应SDPD模型,基于数值模拟和实例应用检验一般QML与修正QML的估计效果。数值模拟结果表明:修正QML比一般QML更精确、更稳健,均方误差修正率随样本短面板结构的增大而增大。实例应用不仅重新评估环境规制与技术创新之间的空间效应,回归结果也再次证实从数值模拟中得出的结论。  相似文献   

9.
Summary.  The paper provides a space–time process model for total wet mercury deposition. Key methodological features that are introduced include direct modelling of deposition rather than of expected deposition, the utilization of precipitation information (there is no deposition without precipitation) without having to construct a precipitation model and the handling of point masses at 0 in the distributions of both precipitation and deposition. The result is a specification that enables spatial interpolation and temporal prediction of deposition as well as aggregation in space or time to see patterns and trends in deposition. We use weekly deposition monitoring data from the National Atmospheric Deposition Program–Mercury Deposition Network for 2003 restricted to the eastern USA and Canada. Our spatiotemporal hierarchical model allows us to interpolate to arbitrary locations and, hence, to an arbitrary grid, enabling weekly deposition surfaces (with associated uncertainties) for this region. It also allows us to aggregate weekly depositions at coarser, quarterly and annual, temporal levels.  相似文献   

10.
A new procedure of shift parameter estimation in the two-sample location problem is investigated and compared with existing estimators. The proposed procedure smooths the empirical distribution functions of each random sample and replaces empirical distribution functions in the two-sample Kolmogorov–Smirnov method. The smoothed Kolmogorov–Smirnov is minimized with respect to an arbitrary shift variable in order to find an estimate of the shift parameter. The proposed procedure can be considered the smoothed version of a very little known method of shift parameter estimation from Rao-Schuster-Littell (RSL) [Rao et al., Estimation of shift and center of symmetry based on Kolmogorov–Smirnov statistics, Ann. Stat. 3(4) (1975), pp. 862–873]. Their estimator will be discussed and compared with the proposed estimator in this paper. An example and simulation studies have been performed to compare the proposed procedure with existing shift parameter estimators such as Hodges–Lehmann (H–L) and least squares in addition to RSL's estimator. The results show that the proposed estimator has lower mean-squared error as well as higher relative efficiency against RSL's estimator under normal or contaminated normal model assumptions. Moreover, the proposed estimator performs competitively against H–L and least-squares shift estimators. Smoother function and bandwidth selections are also discussed and several alternatives are proposed in the study.  相似文献   

11.
We study the quantile estimation methods for the distortion measurement error data when variables are unobserved and distorted with additive errors by some unknown functions of an observable confounding variable. After calibrating the error-prone variables, we propose the quantile regression estimation procedure and composite quantile estimation procedure. Asymptotic properties of the proposed estimators are established, and we also investigate the asymptotic relative efficiency compared with the least-squares estimator. Simulation studies are conducted to evaluate the performance of the proposed methods, and a real dataset is analyzed as an illustration.  相似文献   

12.
The generalized semiparametric mixed varying‐coefficient effects model for longitudinal data can accommodate a variety of link functions and flexibly model different types of covariate effects, including time‐constant, time‐varying and covariate‐varying effects. The time‐varying effects are unspecified functions of time and the covariate‐varying effects are nonparametric functions of a possibly time‐dependent exposure variable. A semiparametric estimation procedure is developed that uses local linear smoothing and profile weighted least squares, which requires smoothing in the two different and yet connected domains of time and the time‐dependent exposure variable. The asymptotic properties of the estimators of both nonparametric and parametric effects are investigated. In addition, hypothesis testing procedures are developed to examine the covariate effects. The finite‐sample properties of the proposed estimators and testing procedures are examined through simulations, indicating satisfactory performances. The proposed methods are applied to analyze the AIDS Clinical Trial Group 244 clinical trial to investigate the effects of antiretroviral treatment switching in HIV‐infected patients before and after developing the T215Y antiretroviral drug resistance mutation. The Canadian Journal of Statistics 47: 352–373; 2019 © 2019 Statistical Society of Canada  相似文献   

13.
Summary.  Short-term forecasts of air pollution levels in big cities are now reported in news-papers and other media outlets. Studies indicate that even short-term exposure to high levels of an air pollutant called atmospheric particulate matter can lead to long-term health effects. Data are typically observed at fixed monitoring stations throughout a study region of interest at different time points. Statistical spatiotemporal models are appropriate for modelling these data. We consider short-term forecasting of these spatiotemporal processes by using a Bayesian kriged Kalman filtering model. The spatial prediction surface of the model is built by using the well-known method of kriging for optimum spatial prediction and the temporal effects are analysed by using the models underlying the Kalman filtering method. The full Bayesian model is implemented by using Markov chain Monte Carlo techniques which enable us to obtain the optimal Bayesian forecasts in time and space. A new cross-validation method based on the Mahalanobis distance between the forecasts and observed data is also developed to assess the forecasting performance of the model implemented.  相似文献   

14.
空间面板数据模型设定问题分析   总被引:4,自引:0,他引:4  
空间面板数据模型将空间计量经济学和面板数据方法相结合,不仅同时考虑时空特征,而且将空间效应纳入研究体系,成为当前计量经济学的热点研究领域,但其模型设定、参数估计及模型检验也更为复杂,实证研究中往往出现模型设定偏误等问题。因此,基于空间面板数据模型的前沿理论,重点探讨模型设定中的常见问题,包括空间滞后模型与空间误差模型的选择、随机效应与固定效应的选择以及模型拟合优度的选择与比较,为模型的应用和新模型的扩展提供理论依据和参考。  相似文献   

15.
A common problem in environmental epidemiology is the estimation and mapping of spatial variation in disease risk. In this paper we analyse data from the Walsall District Health Authority, UK, concerning the spatial distributions of cancer cases compared with controls sampled from the population register. We formulate the risk estimation problem as a nonparametric binary regression problem and consider two different methods of estimation. The first uses a standard kernel method with a cross-validation criterion for choosing the associated bandwidth parameter. The second uses the framework of the generalized additive model (GAM) which has the advantage that it can allow for additional explanatory variables, but is computationally more demanding. For the Walsall data, we obtain similar results using either the kernel method with controls stratified by age and sex to match the age–sex distribution of the cases or the GAM method with random controls but incorporating age and sex as additional explanatory variables. For cancers of the lung or stomach, the analysis shows highly statistically significant spatial variation in risk. For the less common cancers of the pancreas, the spatial variation in risk is not statistically significant.  相似文献   

16.
We propose two new procedures based on multiple hypothesis testing for correct support estimation in high‐dimensional sparse linear models. We conclusively prove that both procedures are powerful and do not require the sample size to be large. The first procedure tackles the atypical setting of ordered variable selection through an extension of a testing procedure previously developed in the context of a linear hypothesis. The second procedure is the main contribution of this paper. It enables data analysts to perform support estimation in the general high‐dimensional framework of non‐ordered variable selection. A thorough simulation study and applications to real datasets using the R package mht shows that our non‐ordered variable procedure produces excellent results in terms of correct support estimation as well as in terms of mean square errors and false discovery rate, when compared to common methods such as the Lasso, the SCAD penalty, forward regression or the false discovery rate procedure (FDR).  相似文献   

17.
Summary. Rainfall data are often collected at coarser spatial scales than required for input into hydrology and agricultural models. We therefore describe a spatiotemporal model which allows multiple imputation of rainfall at fine spatial resolutions, with a realistic dependence structure in both space and time and with the total rainfall at the coarse scale consistent with that observed. The method involves the transformation of the fine scale rainfall to a thresholded Gaussian process which we model as a Gaussian Markov random field. Gibbs sampling is then used to generate realizations of rainfall efficiently at the fine scale. Results compare favourably with previous, less elegant methods.  相似文献   

18.
In this paper, we propose a new full iteration estimation method for quantile regression (QR) of the single-index model (SIM). The asymptotic properties of the proposed estimator are derived. Furthermore, we propose a variable selection procedure for the QR of SIM by combining the estimation method with the adaptive LASSO penalized method to get sparse estimation of the index parameter. The oracle properties of the variable selection method are established. Simulations with various non-normal errors are conducted to demonstrate the finite sample performance of the estimation method and the variable selection procedure. Furthermore, we illustrate the proposed method by analyzing a real data set.  相似文献   

19.
Both kriging and non-parametric regression smoothing can model a non-stationary regression function with spatially correlated errors. However comparisons have mainly been based on ordinary kriging and smoothing with uncorrelated errors. Ordinary kriging attributes smoothness of the response to spatial autocorrelation whereas non-parametric regression attributes trends to a smooth regression function. For spatial processes it is reasonable to suppose that the response is due to both trend and autocorrelation. This paper reviews methodology for non-parametric regression with autocorrelated errors which is a natural compromise between the two methods. Re-analysis of the one-dimensional stationary spatial data of Laslett (1994) and a clearly non-stationary time series demonstrates the rather surprising result that for these data, ordinary kriging outperforms more computationally intensive models including both universal kriging and correlated splines for spatial prediction. For estimating the regression function, non-parametric regression provides adaptive estimation, but the autocorrelation must be accounted for in selecting the smoothing parameter.  相似文献   

20.
Kernel smoothing of spatial point data can often be improved using an adaptive, spatially varying bandwidth instead of a fixed bandwidth. However, computation with a varying bandwidth is much more demanding, especially when edge correction and bandwidth selection are involved. This paper proposes several new computational methods for adaptive kernel estimation from spatial point pattern data. A key idea is that a variable-bandwidth kernel estimator for d-dimensional spatial data can be represented as a slice of a fixed-bandwidth kernel estimator in \((d+1)\)-dimensional scale space, enabling fast computation using Fourier transforms. Edge correction factors have a similar representation. Different values of global bandwidth correspond to different slices of the scale space, so that bandwidth selection is greatly accelerated. Potential applications include estimation of multivariate probability density and spatial or spatiotemporal point process intensity, relative risk, and regression functions. The new methods perform well in simulations and in two real applications concerning the spatial epidemiology of primary biliary cirrhosis and the alarm calls of capuchin monkeys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号