首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study demonstrates that a location parameter of an exponential distribution significantly influences normalization of the exponential. The Kullback–Leibler information number is shown to be an appropriate index for measuring data normality using a location parameter. Control charts based on probability limits and transformation are compared for known and estimated location parameters. The probabilities of type II error (β-risks) and average run length (ARL) without a location parameter indicate an ability to detect an out-of-control signal of an individual chart using a power transformation similar to using probability limits. The β-risks and ARL of control charts with an estimated location parameter deviate significantly from their theoretical values when a small sample size of n≤50 is used. Therefore, without taking into account of the existence of a location parameter, the control charts result in inaccurate detection of an out-of-control signal regardless of whether a power or natural logarithmic transformation is used. The effects of a location parameter should be eliminated before transformation. Two examples are presented to illustrate these findings.  相似文献   

2.
Bayesian control charts have been proposed for monitoring multivariate processes with the multivariate exponentially weighted moving average (MEWMA) statistic. It has been suggested that we use limits based on the predictive distribution of the MEWMA statistic. This analysis, however is based on the erroneous result that the average run length (ARL) is a function of the exceedance probability, that is, the probability that the first point exceeds the control limit. We show how this result can be corrected and we discuss how the Bayesian MEWMA chart with limits based on the predictive distribution compares with other multivariate control chart procedures.  相似文献   

3.
Control charts have been popularly used as a user-friendly yet technically sophisticated tool to monitor whether a process is in statistical control or not. These charts are basically constructed under the normality assumption. But in many practical situations in real life this normality assumption may be violated. One such non-normal situation is to monitor the process variability from a skewed parent distribution where we propose the use of a Maxwell control chart. We introduce a pivotal quantity for the scale parameter of the Maxwell distribution which follows a gamma distribution. Probability limits and L-sigma limits are studied along with performance measure based on average run length and power curve. To avoid the complexity of future calculations for practitioners, factors for constructing control chart for monitoring the Maxwell parameter are given for different sample sizes and for different false alarm rate. We also provide simulated data to illustrate the Maxwell control chart. Finally, a real life example has been given to show the importance of such a control chart.  相似文献   

4.
This work presents an optimal value to be used in the power transformation to transform the exponential to normality for statistical process control (SPC) applications. The optimal value is found by minimizing the sum of absolute differences between two distinct cumulative probability functions. Based on this criterion, a numerical search yields a proposed value of 3.5142, so the transformed distribution is well approximated by the normal distribution. Two examples are presented to demonstrate the effectiveness of using the transformation method and its applications in SPC. The transformed data are almost normally distributed and the performance of the individual charts is satisfactory. Compared to charts that use the original exponential data and probability control limits, the individual charts constructed using the transformed distribution are superior in appearance, ease of interpretation and implementation by practitioners.  相似文献   

5.
Control charts have been used effectively for years to monitor processes and detect abnormal behaviors. However, most control charts require a specific distribution to establish their control limits. The bootstrap method is a nonparametric technique that does not rely on the assumption of a parametric distribution of the observed data. Although the bootstrap technique has been used to develop univariate control charts to monitor a single process, no effort has been made to integrate the effectiveness of the bootstrap technique with multivariate control charts. In the present study, we propose a bootstrap-based multivariate T 2 control chart that can efficiently monitor a process when the distribution of observed data is nonnormal or unknown. A simulation study was conducted to evaluate the performance of the proposed control chart and compare it with a traditional Hotelling's T 2 control chart and the kernel density estimation (KDE)-based T 2 control chart. The results showed that the proposed chart performed better than the traditional T 2 control chart and performed comparably with the KDE-based T 2 control chart. Furthermore, we present a case study to demonstrate the applicability of the proposed control chart to real situations.  相似文献   

6.
Control charts are one of the most important methods in industrial process control. The acceptance control chart is generally applied in situations when an X¯ chart is used to control the fraction of conforming units produced by the process and where 6-sigma spread of the process is smaller than the spread in the specification limits. Traditionally, when designing control charts, one usually assumes that the data or measurements are normally distributed. However, this assumption may not be true in some processes. In this paper, we use the Burr distribution, which is employed to represent various non-normal distributions, to determine the appropriate control limits or sample size for the acceptance control chart under non-normality. Some numerical examples are given for illustration. From the presented examples, ignoring the effect of non-normality in the data leads to a higher type I or type II error probability.  相似文献   

7.
Tukey’s control chart is generally used for monitoring the processes where the measurement process physically damages the product. It is based on single observation and robust to outliers. In this paper, two optimal synthetic Tukey’s control charts are proposed by integrating the conforming run length chart with the Tukey’s control chart and its modification. The performance comparison of the proposed charts with the existing Tukey’s control charts is made by using out-of-control average run length and extra quadratic loss as performance metrics. The proposed charts offer better protection against the process shifts as compare to the existing Tukey’s control charts when the underlying process distribution is symmetric or asymmetric. Simulation studies also establish the supremacy of the proposed control charts over the existing Tukey’s control charts. In the end, an illustrative example based on a real data set of the combined cycle power plant is provided for practical implementation.  相似文献   

8.
The exponentially weighted moving average (EWMA) control charts are widely used in chemical and process industries because of their excellent speed in catching small to moderate shifts in the process target. In usual practice, many data come from a process where the monitoring statistic is non-normally distributed or it follows an unknown probability distribution. This necessitates the use of distribution-free/nonparametric control charts for monitoring the deviations from the process target. In this paper, we integrate the existing EWMA sign chart with the conforming run length chart to propose a new synthetic EWMA (SynEWMA) sign chart for monitoring the process mean. The SynEWMA sign chart encompasses the synthetic sign and EWMA sign charts. Monte Carlo simulations are used to compute the run length profiles of the SynEWMA sign chart. Based on a comprehensive comparison, it turns out that the SynEWMA sign chart is able to perform substantially better than the existing EWMA sign chart. Both real and simulated data sets are used to explain the working and implementation of existing and proposed control charts.  相似文献   

9.
One difficulty with developing multivariate attribute control charts is the lack of the related joint distribution. So, if it would be possible to generate the joint distribution of two (or more) attribute characteristics, then a bivaraite (or multivariate) attribute control chart can be developed based on Types I and II errors. Copula function is a solution to the matter. In this article, applying the copula function approach, we achieve the joint distribution of two correlated zero inflated Poisson (ZIP) distributions. Then, using this joint distribution, we develop a bivaraite control chart which can be used for monitoring correlated rare events. This copula-based bivariate ZIP control chart is compared with the simultaneous use of two separate univariate ZIP control charts. Based on the average run length (ARL) measure, it is shown that the proposed control chart is much better than the simultaneous use of two separate univariate charts. In addition, a real case study related to the environmental air in a sterilization process is investigated to show the applicability of the developed control chart.  相似文献   

10.
ABSTRACT

Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much service data come from a process with variables having non-normal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, should not be properly used in such circumstances. In this paper, we propose a new variance chart based on a simple statistic to monitor process variance shifts. We explore the sampling properties of the new monitoring statistic and calculate the average run lengths (ARLs) of the proposed variance chart. Furthermore, an arcsine transformed exponentially weighted moving average (EWMA) chart is proposed because the ARLs of this modified chart are more intuitive and reasonable than those of the variance chart. We compare the out-of-control variance detection performance of the proposed variance chart with that of the non-parametric Mood variance (NP-M) chart with runs rules, developed by Zombade and Ghute [Nonparametric control chart for variability using runs rules. Experiment. 2014;24(4):1683–1691], and the nonparametric likelihood ratio-based distribution-free exponential weighted moving average (NLE) chart and the combination of traditional exponential weighted moving average (EWMA) mean and EWMA variance (CEW) control chart proposed by Zou and Tsung [Likelihood ratio-based distribution-free EWMA control charts. J Qual Technol. 2010;42(2):174–196] by considering cases in which the critical quality characteristic has a normal, a double exponential or a uniform distribution. Comparison results showed that the proposed chart performs better than the NP-M with runs rules, and the NLE and CEW control charts. A numerical example of service times with a right-skewed distribution from a service system of a bank branch in Taiwan is used to illustrate the application of the proposed variance chart and of the arcsine transformed EWMA chart and to compare them with three existing variance (or standard deviation) charts. The proposed charts show better detection performance than those three existing variance charts in monitoring and detecting shifts in the process variance.  相似文献   

11.
Nonparametric control chart are presented for the problem of detecting changes in the process median (or mean), or changes in the process variability when samples are taken at regular time intervals. The proposed procedures are based on sign-test statistics computed for each sample, and are used in Shewhart and cumulative sum control charts. When the process is in control the run length distributions for the proposed nonparametric control charts do not depend on the distribution of the observations. An additional advantage of the non-parametric control charts is that the variance of the process does not need to be established in order to set up a control chart for the mean. Comparisons with the corresponding parametric control charts are presented. It is also shown that curtailed sampling plans can considerably reduce the expected number of observations used in the Shewhart control schemes based on the sign statistic.  相似文献   

12.
In this paper, gamma ( 5 ,2) distribution is considered as a failure model for the economic statistical design of x ¥ control charts. The study shows that the statistical performance of control charts can be improved significantly, with only a slight increase in the cost, by adding constraints to the optimization problem. The use of an economic statistical design instead of an economic design results in control charts that may be less expensive to implement, that have lower false alarm rates, and that have a higher probability of detecting process shifts. Numerical examples are presented to support this proposition. The results of economic statistical design are compared with those of a pure economic design. The effects of adding constraints for statistical performance measures, such as Type I error rate and the power of the chart, are extensively investigated.  相似文献   

13.
The combined EWMA-X chart is a commonly used tool for monitoring both large and small process shifts. However, this chart requires calculating and monitoring two statistics along with two sets of control limits. Thus, this study develops a single-featured EWMA-X (called SFEWMA-X) control chart which has the ability to simultaneously monitor both large and small process shifts using only one set of statistic and control limits. The proposed SFEWMA-X chart is further extended to monitoring the shifts in process standard deviation. A set of simulated data are used to demonstrate the proposed chart's superior performance in terms of average run length compared with that of the traditional charts. The experimental examples also show that the SFEWMA-X chart is neater and easier to visually interpret than the original EWMA-X chart.  相似文献   

14.
Some control charts have been proposed to monitor the mean of a Weibull process with type-I censoring. One type of control charts is to monitor changes in the scale parameter because it indicates changes in the mean. With this approach, we compare different control charts such as Shewhart-type and exponentially weighted moving average (EWMA) charts based on conditional expected value (CEV) and cumulative sum (CUSUM) chart based on likelihood-ratio. A simulation approach is employed to compute control limits and average run lengths. The results show that the CUSUM chart has the best performance. However, the EWMA-CEV chart is recommendable for practitioners with its competitive performance and ease of use advantage. An illustrative example is also provided.  相似文献   

15.
16.
Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much service data come from a process with variables having nonnormal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, should not be properly used here. In this article, we propose an improved asymmetric EWMA mean chart based on a simple statistic to monitor process mean shift. We explored the sampling properties of the new monitoring statistic and calculated the average run lengths of the proposed asymmetric EWMA mean chart. We recommend the proposed improved asymmetric EWMA mean chart because the average run lengths of the modified charts are more accurate and reasonable than those of the five existed mean charts. A numerical example of service times with a right skewed distribution from a service system of a bank branch is used to illustrate the application of the improved asymmetric EWMA mean chart and to compare it with the five existing mean charts. The proposed chart showed better detection performance than those of the five existing mean charts in monitoring and detecting shifts in the process mean.  相似文献   

17.
The performance of the usual Shewhart control charts for monitoring process means and variation can be greatly affected by nonnormal data or subgroups that are correlated. Define the αk-risk for a Shewhart chart to be the probability that at least one “out-of-control” subgroup occurs in k subgroups when the control limits are calculated from the k subgroups. Simulation results show that the αk-risks can be quite large even for a process with normally distributed, independent subgroups. When the data are nonnormal, it is shown that the αk-risk increases dramatically. A method is also developed for simulating an “in-control” process with correlated subgroups from an autoregressive model. Simulations with this model indicate marked changes in the αk-risks for the Shewhart charts utilizing this type of correlated process data. Therefore, in practice a process should be investigated thoroughly regarding whether or not it is generating normal, independent data before out-of-control points on the control charts are interpreted to be due to some real assignable cause.  相似文献   

18.
In practice, different practitioners will use different Phase I samples to estimate the process parameters, which will lead to different Phase II control chart's performance. Researches refer to this variability as between-practitioners-variability of control charts. Since between-practitioners-variability is important in the design of the CUSUM median chart with estimated process parameters, the standard deviation of average run length (SDARL) will be used to study its properties. It is shown that the CUSUM median chart requires a larger amount of Phase I samples to sufficiently reduce the variation in the in-control ARL of the CUSUM median chart. Considering the limitation of the amount of the Phase I samples, a bootstrap approach is also used here to adjust the control limits of the CUSUM median chart. Comparisons are made for the CUSUM and Shewhart median charts with estimated parameters when using the adjusted- and unadjusted control limits and some conclusions are made.  相似文献   

19.
The Zero-inflated Poisson distribution (ZIP) is used to model the defects in processes with a large number of zeros. We propose a control charting procedure using a combination of two cumulative sum (CUSUM) charts to detect increases in the parameters of ZIP process, one is a conforming run length (CRL) CUSUM chart and another is a zero truncated Poisson (ZTP) CUSUM chart. The control limits of the control charts are obtained using both Markov chain-based methods and simulations. Simulation experiments show that the proposed method outperforms an existing method. Finally, a real example is presented.  相似文献   

20.
In an accelerated hybrid censoring scheme several stress factors can be accelerated to make the products to respond to fail more quickly than under normal operating conditions. In such situations, the control charts available in the literature cover the attribute characteristics only to monitor the performance of the process over time. This study extends the idea by proposing an optimal mixed attribute-variable control chart for Weibull distribution under an accelerated hybrid censoring scheme keeping the advantages of both attribute and variable control charts. It first monitors the number of defectives under accelerated conditions and switches to the variable control chart to investigate the mean failure times when the process stability is dubious. The performance of the proposed chart is evaluated by using run-length characteristics, and the optimality of the design parameter is achieved by minimizing the out-of-control average run length. The simulation study depicted better performance of the proposed control chart than the traditional charts in detecting shifts in the process. A real-life application is also included.KEYWORDS: Mixed control chart, attribute chart, variable chart, Weibull distribution, accelerated hybrid censoring  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号