首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
It is in the broad sense of “a systematic approach to general management” that strategic planning is here compared in large corporations and Government. For, just as strategic planning is today concerned
1.
1. the development and evaluation of optional strategies;  相似文献   

10.
This study uses an empirical survey of middle-line managers in the US and Taiwan to study the association of supply chain management components and organizational performance. Through structural equation modeling, critical components of supply chain management are found to have considerable effects on organizational performance. The findings of the study are summarized as follows:
Supply chain competencies have positive effects on organizational performance in both the US and Taiwan. Supply chain competencies are developed around quality and service, operations and distribution, and design effectiveness. The goal of supply chain competencies is to satisfy customer requirements.  相似文献   

11.
Deciding on ISO 14001: Economics, Institutions, and Context   总被引:1,自引:0,他引:1  
ISO 14001 is an international standard for environmental management systems that was introduced in September 1996. It has gained wide recognition among businesses, much like its sister standard on quality management systems, ISO 9000. As a result, managers in almost every organization will evaluate whether the organization should become ISO 14001 certified. However, most analyses of ISO 14001 that are intended to guide managers in their evaluation have focused on the merits of ISO 14001, such as improved competitiveness, management control, and regulatory compliance. Very few articles provide a balanced picture of the costs and benefits of ISO 14001—including the conditions under which adoption will be most effective. This article redresses this gap by providing an analysis of not only why firms may choose to certify based on economic and institutional considerations, but also, when certification might be appropriate based on the firm’s context.In 1998, the Jutras division of Meridian Magnesium Inc., which manufactures magnesium automotive parts, reported that it saved almost $2 million soon after its $45,000 investment on an ISO 14001 certified environmental management system (EMS).1 The company reduced its use of electricity, natural gas, and lubricants, while producing less solid waste and contaminated water. These were not just one-time savings; they were expected to continue into perpetuity. Not all their ISO 14001 projects were winners, however. Jutras implemented ten projects for their EMS in the first year with an initial goal of saving over $460,000 in costs. Four of the projects did not result in any savings and one had disappointing but positive results. The remaining projects, however, provided larger than expected returns. The cost savings increased the competitiveness of a firm that prides itself on being the low cost leader in an increasingly competitive automotive parts industry. The benefits to the environment were a bonus. And there was yet another bonus from ISO 14001 that had not been anticipated: the preference for ISO certified suppliers by its key customers, Ford and General Motors, and the social legitimacy earned from stakeholders pressuring for greener business practices. The company now posts its ISO 14001 certification on its web site as one of its main achievements.Although this type of vignette presents ISO 14001 in a positive light, not all firms have embraced the standard with enthusiasm. While over 22,000 facilities in 98 countries were ISO 14001 certified by December 31, 2000, many firms had decided to delay certification or reject it altogether.2 The significant financial rewards realized by the Jutras Division of Meridian Magnesium have not been perceived by many of its peers, even though most analyses of ISO 14001 attempt to convince the reader that such a system is of significant strategic importance and a panacea of opportunity. Writers typically tout the potential for lower costs, increased competitiveness, market share growth, higher profits, and regulatory compliance, such as those experienced by Meridian Magnesium.3The costs of ISO 14001, however, are not trivial. Managers need to undertake a careful analysis of the relevance of ISO 14001 to their firm before they decide to jump on the ISO 14001 bandwagon. While managers can estimate the direct costs of certification with the help of good internal cost accounting, evaluating the intangible costs and benefits and the indirect impacts on the firm’s performance is more difficult. In this article, we provide background perspectives and evaluation criteria for those aspects of ISO 14001 certification, looking specifically at the marginal benefit of ISO 14001 certification over an in-house EMS. This article, then, identifies why firms may certify and in which contexts, based on economic and institutional considerations. Armed with relevant decision-making criteria, we present managers with an analytical tool to assist them in determining if ISO 14001 is appropriate for their firm.The insights provided here build on three studies:
1.
an investigation of the motivations of environmental responsiveness by interviewing members of 53 firms in the UK and Japan;4
2.
an investigation of the factors that influence the adoption of ISO 14001 based on a statistical analysis of 46 matched pairs of certified and non-certified firms and interviews with members of six firms in the US;5 and
3.
an investigation of the contexts that explain adoption based on interviews with 16 pulp and paper companies in Canada.6
Details of these studies are provided in text boxes later in this paper. While these studies form the foundation of this paper, many of the anecdotes provided here are based on published sources because the interviewees were promised complete confidentiality.  相似文献   

12.
Let T be a weighted tree with a positive number w(v) associated with each vertex v. A subtree S is a w-central subtree of the weighted tree T if it has the minimum eccentricity \(e_L(S)\) in median graph \(G_{LW}\). A w-central subtree with the minimum vertex weight is called a least w-central subtree of the weighted tree T. In this paper we show that each least w-central subtree of a weighted tree either contains a vertex of the w-centroid or is adjacent to a vertex of the w-centroid. Also, we show that any two least w-central subtrees of a weighted tree either have a nonempty intersection or are adjacent.  相似文献   

13.
Gyárfás conjectured that for a given forest F, there exists an integer function f(Fx) such that \(\chi (G)\le f(F,\omega (G))\) for each F-free graph G, where \(\omega (G)\) is the clique number of G. The broom B(mn) is the tree of order \(m+n\) obtained from identifying a vertex of degree 1 of the path \(P_m\) with the center of the star \(K_{1,n}\). In this note, we prove that every connected, triangle-free and B(mn)-free graph is \((m+n-2)\)-colorable as an extension of a result of Randerath and Schiermeyer and a result of Gyárfás, Szemeredi and Tuza. In addition, it is also shown that every connected, triangle-free, \(C_4\)-free and T-free graph is \((p-2)\)-colorable, where T is a tree of order \(p\ge 4\) and \(T\not \cong K_{1,3}\).  相似文献   

14.
We consider an extension of the popular matching problem in this paper. The input to the popular matching problem is a bipartite graph $G = (\mathcal{A}\cup\mathcal{B},E)$ , where $\mathcal{A}$ is a set of people, $\mathcal{B}$ is a set of items, and each person $a \in\mathcal{A}$ ranks a subset of items in order of preference, with ties allowed. The popular matching problem seeks to compute a matching M ? between people and items such that there is no matching M where more people are happier with M than with M ?. Such a matching M ? is called a popular matching. However, there are simple instances where no popular matching exists. Here we consider the following natural extension to the above problem: associated with each item $b \in\mathcal{B}$ is a non-negative price cost(b), that is, for any item b, new copies of b can be added to the input graph by paying an amount of cost(b) per copy. When G does not admit a popular matching, the problem is to “augment” G at minimum cost such that the new graph admits a popular matching. We show that this problem is NP-hard; in fact, it is NP-hard to approximate it within a factor of $\sqrt{n_{1}}/2$ , where n 1 is the number of people. This problem has a simple polynomial time algorithm when each person has a preference list of length at most 2. However, if we consider the problem of constructing a graph at minimum cost that admits a popular matching that matches all people, then even with preference lists of length 2, the problem becomes NP-hard. On the other hand, when the number of copies of each item is fixed, we show that the problem of computing a minimum cost popular matching or deciding that no popular matching exists can be solved in O(mn 1) time, where m is the number of edges.  相似文献   

15.
An independent set of a graph G is a set of pairwise non-adjacent vertices. Let \(i_k = i_k(G)\) be the number of independent sets of cardinality k of G. The independence polynomial \(I(G, x)=\sum _{k\geqslant 0}i_k(G)x^k\) defined first by Gutman and Harary has been the focus of considerable research recently, whereas \(i(G)=I(G, 1)\) is called the Merrifield–Simmons index of G. In this paper, we first proved that among all trees of order n,  the kth coefficient \(i_k\) is smallest when the tree is a path, and is largest for star. Moreover, the graph among all trees of order n with diameter at least d whose all coefficients of I(Gx) are largest is identified. Then we identify the graphs among the n-vertex unicyclic graphs (resp. n-vertex connected graphs with clique number \(\omega \)) which simultaneously minimize all coefficients of I(Gx), whereas the opposite problems of simultaneously maximizing all coefficients of I(Gx) among these two classes of graphs are also solved respectively. At last we characterize the graph among all the n-vertex connected graph with chromatic number \(\chi \) (resp. vertex connectivity \(\kappa \)) which simultaneously minimize all coefficients of I(Gx). Our results may deduce some known results on Merrifield–Simmons index of graphs.  相似文献   

16.
Let \(LTQ_n\) be the n-dimensional locally twisted cube. Hsieh and Tu (Theor Comput Sci 410(8–10):926–932, 2009) proposed an algorithm to construct n edge-disjoint spanning trees rooted at a particular vertex 0 in \(LTQ_n\). Later on, Lin et al. (Inf Process Lett 110(10):414–419, 2010) proved that Hsieh and Tu’s spanning trees are indeed independent spanning trees (ISTs for short), i.e., all spanning trees are rooted at the same vertex r and for any other vertex \(v(\ne r)\), the paths from v to r in any two trees are internally vertex-disjoint. Shortly afterwards, Liu et al. (Theor Comput Sci 412(22):2237–2252, 2011) pointed out that \(LTQ_n\) fails to be vertex-transitive for \(n\geqslant 4\) and proposed an algorithm for constructing n ISTs rooted at an arbitrary vertex in \(LTQ_n\). Although this algorithm can simultaneously construct n ISTs, it is hard to be parallelized for the construction of each spanning tree. In this paper, from a modification of Hsieh and Tu’s algorithm, we present a fully parallelized scheme to construct n ISTs rooted at an arbitrary vertex in \(LTQ_n\) in \({\mathcal O}(n)\) time using \(2^n\) vertices of \(LTQ_n\) as processors.  相似文献   

17.
Given an edge-weighted undirected graph $G=(V,E,c,w)$ where each edge $e\in E$ has a cost $c(e)\ge 0$ and another weight $w(e)\ge 0$ , a set $S\subseteq V$ of terminals and a given constant $\mathrm{C}_0\ge 0$ , the aim is to find a minimum diameter Steiner tree whose all terminals appear as leaves and the cost of tree is bounded by $\mathrm{C}_0$ . The diameter of a tree refers to the maximum weight of the path connecting two different leaves in the tree. This problem is called the minimum diameter cost-constrained Steiner tree problem, which is NP-hard even when the topology of the Steiner tree is fixed. In this paper, we deal with the fixed-topology restricted version. We prove the restricted version to be polynomially solvable when the topology is not part of the input and propose a weakly fully polynomial time approximation scheme (weakly FPTAS) when the topology is part of the input, which can find a $(1+\epsilon )$ –approximation of the restricted version problem for any $\epsilon >0$ with a specific characteristic.  相似文献   

18.
A total weighting of a graph G is a mapping \(\phi \) that assigns a weight to each vertex and each edge of G. The vertex-sum of \(v \in V(G)\) with respect to \(\phi \) is \(S_{\phi }(v)=\sum _{e\in E(v)}\phi (e)+\phi (v)\). A total weighting is proper if adjacent vertices have distinct vertex-sums. A graph \(G=(V,E)\) is called \((k,k')\)-choosable if the following is true: If each vertex x is assigned a set L(x) of k real numbers, and each edge e is assigned a set L(e) of \(k'\) real numbers, then there is a proper total weighting \(\phi \) with \(\phi (y)\in L(y)\) for any \(y \in V \cup E\). In this paper, we prove that for any graph \(G\ne K_1\), the Mycielski graph of G is (1,4)-choosable. Moreover, we give some sufficient conditions for the Mycielski graph of G to be (1,3)-choosable. In particular, our result implies that if G is a complete bipartite graph, a complete graph, a tree, a subcubic graph, a fan, a wheel, a Halin graph, or a grid, then the Mycielski graph of G is (1,3)-choosable.  相似文献   

19.
An L(2, 1)-coloring (or labeling) of a graph G is a mapping \(f:V(G) \rightarrow \mathbb {Z}^{+}\bigcup \{0\}\) such that \(|f(u)-f(v)|\ge 2\) for all edges uv of G, and \(|f(u)-f(v)|\ge 1\) if u and v are at distance two in G. The span of an L(2, 1)-coloring f, denoted by span f, is the largest integer assigned by f to some vertex of the graph. The span of a graph G, denoted by \(\lambda (G)\), is min {span \(f: f\text {is an }L(2,1)\text {-coloring of } G\}\). If f is an L(2, 1)-coloring of a graph G with span k then an integer l is a hole in f, if \(l\in (0,k)\) and there is no vertex v in G such that \(f(v)=l\). A no-hole coloring is defined to be an L(2, 1)-coloring with span k which uses all the colors from \(\{0,1,\ldots ,k\}\), for some integer k not necessarily the span of the graph. An L(2, 1)-coloring is said to be irreducible if colors of no vertices in the graph can be decreased and yield another L(2, 1)-coloring of the same graph. An irreducible no-hole coloring of a graph G, also called inh-coloring of G, is an L(2, 1)-coloring of G which is both irreducible and no-hole. The lower inh-span or simply inh-span of a graph G, denoted by \(\lambda _{inh}(G)\), is defined as \(\lambda _{inh}(G)=\min ~\{\)span f : f is an inh-coloring of G}. Given a graph G and a function h from E(G) to \(\mathbb {N}\), the h-subdivision of G, denoted by \(G_{(h)}\), is the graph obtained from G by replacing each edge uv in G with a path of length h(uv). In this paper we show that \(G_{(h)}\) is inh-colorable for \(h(e)\ge 2\), \(e\in E(G)\), except the case \(\Delta =3\) and \(h(e)=2\) for at least one edge but not for all. Moreover we find the exact value of \(\lambda _{inh}(G_{(h)})\) in several cases and give upper bounds of the same in the remaining.  相似文献   

20.
For an edge-weighted graph \(G=(V,E,w)\), in which the vertices are partitioned into k clusters \(\mathcal {R}=\{R_1,R_2,\ldots ,R_k\}\), a spanning tree T of G is a clustered spanning tree if T can be cut into k subtrees by removing \(k-1\) edges such that each subtree is a spanning tree for one cluster. In this paper, we show the inapproximability of finding a clustered spanning tree with minimum routing cost, where the routing cost is the total distance summed over all pairs of vertices. We present a 2-approximation for the case that the input is a complete weighted graph whose edge weights obey the triangle inequality. We also study a variant in which the objective function is the total distance summed over all pairs of vertices of different clusters. We show that the problem is polynomial-time solvable when the number of clusters k is 2 and NP-hard for \(k=3\). Finally, we propose a polynomial-time 2-approximation algorithm for the case of three clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号