首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of finding confidence regions (CR) for a q-variate vector γ given as the solution of a linear functional relationship (LFR) Λγ = μ is investigated. Here an m-variate vector μ and an m × q matrix Λ = (Λ1, Λ2,…, Λq) are unknown population means of an m(q+1)-variate normal distribution Nm(q+1)(ζΩ?Σ), where ζ′ = (μ′, Λ1′, Λ2′,…, ΛqΣ is an unknown, symmetric and positive definite m × m matrix and Ω is a known, symmetric and positive definite (q+1) × (q+1) matrix and ? denotes the Kronecker product. This problem is a generalization of the univariate special case for the ratio of normal means.A CR for γ with level of confidence 1 ? α, is given by a quadratic inequality, which yields the so-called ‘pseudo’ confidence regions (PCR) valid conditionally in subsets of the parameter space. Our discussion is focused on the ‘bounded pseudo’ confidence region (BPCR) given by the interior of a hyperellipsoid. The two conditions necessary for a BPCR to exist are shown to be the consistency conditions concerning the multivariate LFR. The probability that these conditions hold approaches one under ‘reasonable circumstances’ in many practical situations. Hence, we may have a BPCR with confidence approximately 1 ? α. Some simulation results are presented.  相似文献   

2.
A stochastic approximation procedure of the Robbins-Monro type is considered. The original idea behind the Newton-Raphson method is used as follows. Given n approximations X1,…, Xn with observations Y1,…, Yn, a least squares line is fitted to the points (Xm, Ym),…, (Xn, Yn) where m<n may depend on n. The (n+1)st approximation is taken to be the intersection of the least squares line with y=0. A variation of the resulting process is studied. It is shown that this process yields a strongly consistent sequence of estimates which is asymptotically normal with minimal asymptotic variance.  相似文献   

3.
Suppose particles are randomly distributed in a certain medium, powder or liquid, which is conceptually divided into N cells. Let pi denote the probability that a particle falls in the ith cell and Yi denote the number of particles in the ith cell. Assume that the joint probability function of the Yi follows a multinomial distribution with cell probabilities pi respectively. Take n (≤N) cells at random without replacement and put each of the cells separately through a mixing mechanism of dilution and swirl. These n cells constitute the first stage samples and the number of particles in these cells are not observable. Now conceptually divide each of n cells into M subcells of equal size and let Xij denote the number of particles in the jth subcell of the ith cell selected in the first stage; i=1,2,…,N and j=1,2,…,M. Consequently assume that the conditional joint probability function of the Xij given Yi=yi follows a multinomial distribution with equal cell probabilities. Now take m (≤M) subcells at random from each of the cells selected in the first stage sample. Assume that the numbers of particles in M×N subcells are observable. The properties of the estimator of the particle density per sample unit are investigated under the modified two-stage cluster sampling method. A laboratory experiment for Xanthan Gum Products is analyzed in order to examine the appropriateness of the model assumed in this paper.  相似文献   

4.
We consider the signed linear rank statistics of the form
SΔN= i=1N cNiø(RΔNi(N+1))sgn YΔNi
where the cNi's are known real numbers, Δ∈[0,1] is an unknown real parameter,RΔNi is the rank of |YΔNi| among |YΔNj|, 1≤jN, ø is a score generating function, sgn y=1 or -1 according as y≥0 or <0, and YΔNj, 1≤jN, are independent random variables with continuous cumulative distribution functions F(y?ΔdNj), 1≤ jN, respectively where the dfNi's are known real numbers. Under suitable assumptions on the c's, d's, φ and F, it is proved that the random process {SΔN?S0N?ESΔN, 0≤Δ≤1}, properly normalized, converges weakly to a Gaussian process, and this result is also true if ESΔN is replaced by ΔbN, where
bN=4 i=1N cNidNi0 ø′(2F(x)?1)?2(x)dx and ?=F′
. As an application, we derive the asymptotic distribution of the properly normalized length of a confidence interval for Δ.  相似文献   

5.
Designs for quadratic and cubic regression are considered when the possible choices of the controlable variable are points x=( x1,x2,…,xq) in the q-dimensional. Full of radius R, Bq(R) ={x:Σ4ix2i?R2}. The designs that are optimum among rotatable designs with respect to the D-, A-, and E-optimality criteria are compared in their performance relative to these and other criteria, including extrapolation. Additionally, the performance of a design optimum for one value of R, when it is implemented for a different value of R, is investigated. Some of the results are developed algebraically; others, numerically. For example, in quadratic regression the A-optimum design appears to be fairly robust in its efficiency, under variation of criterion.  相似文献   

6.
A RENEWAL THEOREM IN MULTIDIMENSIONAL TIME   总被引:1,自引:0,他引:1  
Let Yl, Y2,… be i.i.d., positive, integer-valued random variables with means, μ. Let the sequences {Yij, j= 1,2,…}, i= 1,…, r be independent copies of {Y1, Y2,…}. For n={n1,…, nr.}, n1≥1, let Sn=S?n1k1=1= 1 …S?nrkr=1 Yik1… Yrkr. We show that S?Nk=1S?k1=1…S?nr=1 P[[Sn= k] ? [μ-r N logr-1 (N)/(r-1)!] as N →∞.  相似文献   

7.
We study a randomized adaptive design to assign one of the LL treatments to patients who arrive sequentially by means of an urn model. At each stage nn, a reward is distributed between treatments. The treatment applied is rewarded according to its response, 0?Yn?10?Yn?1, and 1-Yn1-Yn is distributed among the other treatments according to their performance until stage n-1n-1. Patients can be classified in K+1K+1 levels and we assume that the effect of this level in the response to the treatments is linear. We study the asymptotic behavior of the design when the ordinary least square estimators are used as a measure of performance until stage n-1n-1.  相似文献   

8.
Let GF(s) be the finite field with s elements.(Thus, when s=3, the elements of GF(s) are 0, 1 and 2.)Let A(r×n), of rank r, and ci(i=1,…,f), (r×1), be matrices over GF(s). (Thus, for n=4, r=2, f=2, we could have A=[11100121], c1=[10], c2=[02].) Let Ti (i=1,…,f) be the flat in EG(n, s) consisting of the set of all the sn?r solutions of the equations At=ci, wheret′=(t1,…,tn) is a vector of variables.(Thus, EG(4, 3) consists of the 34=81 points of the form (t1,t2,t3,t4), where t's take the values 0,1,2 (in GF(3)). The number of solutions of the equations At=ci is sn?r, where r=Rank(A), and the set of such solutions is said to form an (n?r)-flat, i.e. a flat of (n?r) dimensions. In our example, both T1 and T2 are 2-flats consisting of 34?2=9 points each. The flats T1,T2,…,Tf are said to be parallel since, clearly, no two of them can have a common point. In the example, the points of T1 are (1000), (0011), (2022), (0102), (2110), (1121), (2201), (1212) and (0220). Also, T2 consists of (0002), (2010), (1021), (2101), (1112), (0120), (1200), (0211) and (2222).) Let T be the fractional design for a sn symmetric factorial experiment obtained by taking T1,T2,…,Tf together. (Thus, in the example, 34=81 treatments of the 34 factorial experiment correspond one-one with the points of EG(4,3), and T will be the design (i.e. a subset of the 81 treatments) consisting of the 18 points of T1 and T2 enumerated above.)In this paper, we lay the foundation of the general theory of such ‘parallel’ types of designs. We define certain functions of A called the alias component matrices, and use these to partition the coefficient matrix X (n×v), occuring in the corresponding linear model, into components X.j(j=0,1,…,g), such that the information matrix X is the direct sum of the X′.jX.j. Here, v is the total number of parameters, which consist of (possibly μ), and a (general) set of (geometric) factorial effects (each carrying (s?1) degrees of freedom as usual). For j≠0, we show that the spectrum of X′.jX.j does not change if we change (in a certain important way) the usual definition of the effects. Assuming that such change has been adopted, we consider the partition of the X.j into the Xij (i=1,…,f). Furthermore, the Xij are in turn partitioned into smaller matrices (which we shall here call the) Xijh. We show that each Xijh can be factored into a product of 3 matrices J, ζ (not depending on i,j, and h) and Q(j,h,i)where both the Kronecker and ordinary product are used. We introduce a ring R using the additive groups of the rational field and GF(s), and show that the Q(j,h,i) belong to a ring isomorphic to R. When s is a prime number, we show that R is the cyclotomic field. Finally, we show that the study of the X.j and X′.jX.j can be done in a much simpler manner, in terms of certain relatively small sized matrices over R.  相似文献   

9.
The norm 6A6 = {tr(A′A)}12 of the alias matrix A of a design can be used as a measure for selecting a design. In this paper, an explicit expression for 6A6 will be given for a balanced fractional 2m factorial design of resolution 2l + 1 which obtained from a simple array with parameters (m; λ0, λ1,…, λm). This array is identical with a balanced array of strength m, m constraints and index set {λ0, λ1,…, λm}. In the class of the designs of resolution V (l = 2) obtained from S-arrays, ones which minimize 6A6 will be presented for any fixed N assemblies satisfying (i) m = 4, 11 ? N ? 16, (ii) m = 5, 16 ? N ? 32, and (iii) m = 6, 22 ? N ? 40.  相似文献   

10.
We study the problem of approximating a stochastic process Y = {Y(t: tT} with known and continuous covariance function R on the basis of finitely many observations Y(t 1,), …, Y(t n ). Dependent on the knowledge about the mean function, we use different approximations ? and measure their performance by the corresponding maximum mean squared error sub t∈T E(Y(t) ? ?(t))2. For a compact T ? ? p we prove sufficient conditions for the existence of optimal designs. For the class of covariance functions on T 2 = [0, 1]2 which satisfy generalized Sacks/Ylvisaker regularity conditions of order zero or are of product type, we construct sequences of designs for which the proposed approximations perform asymptotically optimal.  相似文献   

11.
Designs for quadratic regression are considered when the possible choices of the controllable variable are points x=(x1,x2,…,xq) in the q-dimensional cube of side 2. The designs that are optimum with respect to such criteria as those of D-, A-, and E-optimality are compared in their performance relative to these and other criteria. Some of the results are developed algebraically; others, numerically. The possible supports of E-optimum designs are much more numerous than the D-optimum supports characterized earlier. The A-optimum design appears to be fairly robust in its efficiency, under variation of criterion.  相似文献   

12.
Let X be a discrete random variable the set of possible values (finite or infinite) of which can be arranged as an increasing sequence of real numbers a1<a2<a3<…. In particular, ai could be equal to i for all i. Let X1nX2n≦?≦Xnn denote the order statistics in a random sample of size n drawn from the distribution of X, where n is a fixed integer ≧2. Then, we show that for some arbitrary fixed k(2≦kn), independence of the event {Xkn=X1n} and X1n is equivalent to X being either degenerate or geometric. We also show that the montonicity in i of P{Xkn = X1n | X1n = ai} is equivalent to X having the IFR (DFR) property. Let ai = i and G(i) = P(X≧i), i = 1, 2, …. We prove that the independence of {X2n ? X1nB} and X1n for all i is equivalent to X being geometric, where B = {m} (B = {m,m+1,…}), provided G(i) = qi?1, 1≦im+2 (1≦im+1), where 0<q<1.  相似文献   

13.
The authors consider a finite population ρ = {(Yk, xk), k = 1,…,N} conforming to a linear superpopulation model with unknown heteroscedastic errors, the variances of which are values of a smooth enough function of the auxiliary variable X for their nonparametric estimation. They describe a method of the Chambers‐Dunstan type for estimation of the distribution of {Yk, k = 1,…, N} from a sample drawn from without replacement, and determine the asymptotic distribution of its estimation error. They also consider estimation of its mean squared error in particular cases, evaluating both the analytical estimator derived by “plugging‐in” the asymptotic variance, and a bootstrap approach that is also applicable to estimation of parameters other than mean squared error. These proposed methods are compared with some common competitors in simulation studies.  相似文献   

14.
Let TM be an M-estimator (maximum likelihood type estimator) and TR be an R-estimator (Hodges-Lehmann's estimator) of the shift parameter Δ in the two-sample location model. The asymptotic representation of √N(TM-TR) up to a term of the order Op(N-14) is derived which is valid if the functions Ψ and ? generating TM and TR, respectively, decompose into an absolutely continuous and a step-function components; the order Op(N-14) cannot be improved unless the discontinuous components vanish. As a consequence, the conditions under which √N(TM-TR)=Op(N-14) are obtained. The main tool for obtaining the results is the second order asymptotic linearity of the pertaining linear rank statistics which is proved here under the assumption that the score-generating function ? has some jump-discontinuities.  相似文献   

15.
Let (X1,…,Xk) be a multinomial vector with unknown cell probabilities (p1,?,pk). A subset of the cells is to be selected in a way so that the cell associated with the smallest cell probability is included in the selected subset with a preassigned probability, P1. Suppose the loss is measured by the size of the selected subset, S. Using linear programming techniques, selection rules can be constructed which are minimax with respect to S in the class of rules which satisfy the P1-condition. In some situations, the rule constructed by this method is the rule proposed by Nagel (1970). Similar techniques also work for selection in terms of the largest cell probability.  相似文献   

16.
Given the regression model Yi = m(xi) +εi (xi ε C, i = l,…,n, C a compact set in R) where m is unknown and the random errors {εi} present an ARMA structure, we design a bootstrap method for testing the hypothesis that the regression function follows a general linear model: Ho : m ε {mθ(.) = At(.)θ : θ ε ? ? Rq} with A a functional from R to Rq. The criterion of the test derives from a Cramer-von-Mises type functional distance D = d2([mcirc]n, At(.)θn), between [mcirc]n, a Gasser-Miiller non-parametric estimator of m, and the member of the class defined in Ho that is closest to mn in terms of this distance. The consistency of the bootstrap distribution of D and θn is obtained under general conditions. Finally, simulations show the good behavior of the bootstrap approximation with respect to the asymptotic distribution of D = d2.  相似文献   

17.
We develop a saddle-point approximation for the marginal density of a real-valued function p(), where is a general M-estimator of a p-dimensional parameter, that is, the solution of the system {n-1ljl (Yl,) = 0}j=1,…,p. The approximation is applied to several regression problems and yields very good accuracy for small samples. This enables us to compare different classes of estimators according to their finite-sample properties and to determine when asymptotic approximations are useful in practice.  相似文献   

18.
We prove that if pr and pr ? 1 are both prime powers then there is a generalized Hadamard matrix of order pr(pr ? 1) with elements from the elementary abelian group Zp x?x Zp. This result was motivated by results of Rajkundia on BIBD's. This result is then used to produce pr ? 1 mutually orthogonal F-squares F(pr(pr ? 1); pr ? 1).  相似文献   

19.
We regard the simple linear calibration problem where only the response y of the regression line y = β0 + β1 t is observed with errors. The experimental conditions t are observed without error. For the errors of the observations y we assume that there may be some gross errors providing outlying observations. This situation can be modeled by a conditionally contaminated regression model. In this model the classical calibration estimator based on the least squares estimator has an unbounded asymptotic bias. Therefore we introduce calibration estimators based on robust one-step-M-estimators which have a bounded asymptotic bias. For this class of estimators we discuss two problems: The optimal estimators and their corresponding optimal designs. We derive the locally optimal solutions and show that the maximin efficient designs for non-robust estimation and robust estimation coincide.  相似文献   

20.
Let X1,X2,…,Xm be distributed normally with mean μ and variance σ2 X; Let Y1,Y2,…,Yn be distributed normally with mean μ and variance σ2 Y; let X1,X2,…,Xm,Y1,Y2,…,Yn be jointly independent. There have been several papers written concerning point estimation of μ for this problem, but very little is available in the literature concerning confidence intervals on the common mean μ. In this paper a method is proposed that results in a confidence interval with confidence coefficient essentially equal to a prescribed value 1 - α. The method is evaluated and compnred with other methods through the expected length of the confidence interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号