首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文得到一个关于实正定方阵行列式的不等式,它是文[1]中相应定理的指数型推广,同时,由其证明过程简便地得到文[2]中定理。文[1]给出了实正定方阵成亚正定矩阵~([3])的概念:设A(?)R~(t×n),R~t是n维实向量空间,若对任意0≠x(?)R~n,有xAx~T>0 (1)则称A是实正定方阵。记S=1/2(A+A~T),K=1/2(A-A~T),我们有:引理1~([3])设A(?)R~(t×n),则A是实正定方阵的充要条件是S是实正定对称阵。  相似文献   

2.
设y=f(x)是区间[a,b]内的一个初等连续函数(图一)。 由图象易知:x_1,x_2,x_3…x_n分别是函数f(x)的n个零点,并把区间(a,b)分成了(n+1)个有序区间(从左到右);在(a,x_1)内,恒有f(x)>0,在(x_1,x_2)内,恒有f(x)<0,在(x_2,x_3)内,恒有f(x)>0,…,在(x_n,b)内,恒有f(x)<0,或者恒有f(x)>0。这一事实告诉我们:  相似文献   

3.
数列x_n=(1+1/n)~n当自然数n→∞时的极限,在高等数学中起着重要的作用。几乎所有的数学分析教材对它都作了详尽研究。且一般地先证然后证明从而得到  相似文献   

4.
本文解决一类递推数列x_(n+1)=f(x_n)的通项公式,其中f(x)=ax~2+bx-2/a-b/2a+b~2/4a,进而研究其当初始值变化时的若干性质。  相似文献   

5.
利用λ——矩阵的初步知识,本文给出了多项式的最大因式的另一种矩阵求法(定理1).该法道理浅显易懂,方法简单实用;同时,本文也解决了最大公因式的组合系数问题(定理2),即在求出多项式的最大公因式的过程中,也同时巧妙地求出了多项式μ_i(X)(i=1,2,…,n),使得(?)μ_i(x)f_i(x)=(f_1(X),f_2(x),…,f_n(x)成立,从而弥补了《最高公因式的矩阵求法》一文的缺陷.如文[1]最后所说:“这种方法并没有给出求得使(?)f_i(x)μ_i(x)=d(x)(d(x)为 f_1(x),f_2(x),…,f_n(x)的最高公因式)成立的μ_1(x)(i=1,2,…,n)的办法,因此,如果需要求出这样的μ_i(x)(i=1,2,…,n),则应该使用其他方法.”受文[1]的启发,本文给出了同时能求出文[1]中所说的d(x)和μ_i(x)的矩阵方法.  相似文献   

6.
<正> 关于含参量积分顺序可交换的条件,一般教科书上都表述为: 定理1 若f(x,y)在R[a,b;c,d]上连续,则 integral from n=h to b(dx) integral from n=c to d f(x,y)dy=integral from n=c to d(dy) integral from n=h to bf(x,y)dx。 如所周知,其中“f(x,y)在R[a,b;d]上连续”的条件是很强的,用它刻划积分顺序的可交换性甚不理想。比如  相似文献   

7.
本文先给出一道分析命题,然后将它与微积分中值公式联系起来。 命题1 设函数f(x)在区间[0,1]上可导,而且f(0)=0,f(1)=1,则对任何sum from i=1 to n(α_i),0≤α_i≤1,存在[0,1]中n个不同数x_1,…,x_n,便得sum from i=1 to n(a_i/integral to 1(x_i)) =1 证n=1时,α_1=1,结论显然成立,下面不妨0<α_1<1,当n=2时,因为0<α_1<1,所以存在ξ_1∈(0,1)使得f(ξ)=α_1,由微分中值定理得:  相似文献   

8.
<正>设Y_1,Y_2,…Y_a是在固定点x_1,x_2,…x_R的几个观察值,适合模型Y_i=g(x_1)+E_i 1≤i≤n这里g( )是〔0,1〕区间上的未知函数,{a_i}是零均值的iid随机变量,且假定0≤x_1≤x_2≤…≤x_n≤1。我们要估计g()。Priestly and chao提出了一种加权核估计方法,即用(2)来估计g(x)。其中K(u)是密度函数,文[1]给出了g_(?)(x)  相似文献   

9.
刘玉琏,付沛仁编的《数学分析讲义》最新版(1992年7月第三版)练习题9.2(一)第6题(该讲义下册63页): 证明:若函数级数sum from n=1 to f_n(x)与sum from n=1 to g_n(x)在区间I都一致收敛,且函数列{f_n(x)}与{g_n(x)}在区间I都一致有界,则函数级数sum from n=1 to f_n(x)g_n(x)在区间I一致收敛。 这是历次版本未有的一道新题,遗憾的是它却又是该讲义中少有的一道伪习题。 定理1 上述习题为伪命题 [反例] 取f_n(x)=(-1)~(n-1)1/n~(1/2),g_n(x)=(-1)~(n-1)1/n~(1/3)使用莱布尼兹判别法不难验证sum from n=1 to (-1)~(n-1)1/n~(1/2)与sum from n=1 to (-1)~(n-1)1/n~(1/2)与sum from n=1 to (-1)~(n-1)1/n~(1/3)均收敛,由于与x无关,对x当然一致收敛,又,|(-1)~(n-1)1/n~(1/2)|≤1,与(-1)~(n-1)1/n~(1/3)≤1(x)即对x一致有界,但是sum from n=1 to ∞1/n~(1/2)·1/n~(1/3)=sum from n=1 to ∞1/n~(5/6),5/6<1,发散。 因此,上述习题为伪命题 □  相似文献   

10.
设F_n为第n个Fibonacci数,即f_0=0,F_1=1,F_n=F_(n-1)+F_(n-2)(n≥2),边长为Fibonacci数的Heron三角形称为Fibonacci三角形,文[1]中有如下猜想,当1≤k相似文献   

11.
由文献[4]我们知道,当P(x)不同时,由齐次偏微分方程(α/αx×w(n,x,u)=n/p(x)×w(n,x,y)·(μ-x)及规范化条件integral from -∞=1 to ∞×w(n,x,u)du=1确定出的指数型算子integral from -∞=1 to ∞×w(n,x,u)f(u)·du亦不同。文[1]讨论了p(x)是至多二次的多项式时指数型算子的一致逼近问题,本文将就P(x)的更一般的情形给出一致逼近的正定理及饱和类。  相似文献   

12.
本文研究了满足条件“Aan + 1=Ban+CDan2 +E”的一类特殊数列 {an}在特定条件下递推公式的求法 ,得到了两个既重要且又十分美妙和谐的结论 :在上述的数列中 ,若参数A、B、C、D、E满足条件“A、B、C、D、E∈Z ,ABCD≠ 0 ,A >0 ,且A2 =B2 -C2 D” ,则该数列一定是一个二阶线性递归数列 ,或更特殊一些 ,是一个周期数列。即该数列 {an}一定满足an + 2 =2BAan + 1-an,或an + 2 =an。我们将文中 [1 ]中的结论作了进一步的推广 ,文 [1 ]中的问题成了本文结论的一个特例。  相似文献   

13.
本文讨论积分integral from [p(x)/(ax~2+bx+c)~ (1/m)]dx(其中p(x)为x的n次多项式,n≥1,m>2,m∈n.a≠0,b~2-4ac≠0),得出该积分能用初等函数表示(称为能表为有限形式)的充要条件,进而给出了求integral from [p(x)/(ax~2+bx+c)~ (1/m)]dx的待定系数法.  相似文献   

14.
定理1:若二次函数y=ax~2+bx+c[a≠0]图象与x轴的两个交点在坐标原点的同侧,则必有对应的二次方程ax~2+bx+c=0[a≠0]的{△>0 (x_1x_1)>0}(x_1,x_2 为方程ax~2+bx+c=0[a≠0]的两根)。反之亦然。 证明:∵ 二次函数的y=ax~2+bx+c[a≠0]的图象与x轴有两个交点 ∴ ax~2+bx+c=0有两个不等的实根  相似文献   

15.
一、f(x)在[a,b]上的三角展开式及其特例 我们知道,在[-π,π]上满足收敛定理条件(如Dini定理的“逐段光滑”)的函数 f(x),由系数a_n=1/π integral from n=-π to π f(x)siinxdx,(n=1,2,3,……) (1)b_n=1/π integral from n=-π to π f(x)siinxdx,(n=1,2,3,……) (2)确定的三角级数 a_0/2+sum from n=1 to∞(a_n cosnx+b_n sinnx) (3)  相似文献   

16.
1979年6月号《数学通报》发表的《关于一数列的通项公式》,求出了一个数列(本文中的例1)的通项公式。本文用幂级数展开的方法,求得同类数列的通项公式。 已知数列 x_0=b_0,x_1=b_1,α_0x_n α_1x_(n-1) α_(n-2)=0(α_0,α_1,α_2为非零实数,n≥2),则{x_n}有下列通项公式: (1) 当辅助方程α_0 α_1y α_2y~2=0有相等实根y=r时,  相似文献   

17.
在[1]中给出了一个数列极限的定理,它通过数列相邻项的线性组合把数列转化为一个简单且易求极限的数列。本文改进了[1]中的结果。  相似文献   

18.
一、问题的提出连续函数具有下面的性质:定理若 f(x)在[c.d],上连续,则有c′∈[e.d],d′∈[c.d],(c′相似文献   

19.
<正> 设[a、b]上的可积函数列{f_a(x)}收敛于极限函数f(x),那么f(x)在[a、b]上是否必可积?肯定的回答似乎要比否定的回答更具有诱惑力,但正确的答案却是否定的,即[a,b]上可积函数列的极限函数在[a、b]上未必可积。下例为证:  相似文献   

20.
以第二类多项式U_n(x)的原点为插值节点的Hermite—Fejer型插值算子H_(i,n)(f)(i=11,12,…,16)并非对任何[-1,1]上的连续函数f(x)都能在[0,1]上一致收敛于f(x)。本文讨论了这些算子在区间[-1,1]上关于权函数(1-x~2)~(1/2)的平均收敛问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号