首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Expectation–Maximization (EM) algorithm is a very popular technique for maximum likelihood estimation in incomplete data models. When the expectation step cannot be performed in closed form, a stochastic approximation of EM (SAEM) can be used. Under very general conditions, the authors have shown that the attractive stationary points of the SAEM algorithm correspond to the global and local maxima of the observed likelihood. In order to avoid convergence towards a local maxima, a simulated annealing version of SAEM is proposed. An illustrative application to the convolution model for estimating the coefficients of the filter is given.  相似文献   

2.
We introduce a class of spatial random effects models that have Markov random fields (MRF) as latent processes. Calculating the maximum likelihood estimates of unknown parameters in SREs is extremely difficult, because the normalizing factors of MRFs and additional integrations from unobserved random effects are computationally prohibitive. We propose a stochastic approximation expectation-maximization (SAEM) algorithm to maximize the likelihood functions of spatial random effects models. The SAEM algorithm integrates recent improvements in stochastic approximation algorithms; it also includes components of the Newton-Raphson algorithm and the expectation-maximization (EM) gradient algorithm. The convergence of the SAEM algorithm is guaranteed under some mild conditions. We apply the SAEM algorithm to three examples that are representative of real-world applications: a state space model, a noisy Ising model, and segmenting magnetic resonance images (MRI) of the human brain. The SAEM algorithm gives satisfactory results in finding the maximum likelihood estimate of spatial random effects models in each of these instances.  相似文献   

3.
We propose a new methodology for maximum likelihood estimation in mixtures of non linear mixed effects models (NLMEM). Such mixtures of models include mixtures of distributions, mixtures of structural models and mixtures of residual error models. Since the individual parameters inside the NLMEM are not observed, we propose to combine the EM algorithm usually used for mixtures models when the mixture structure concerns an observed variable, with the Stochastic Approximation EM (SAEM) algorithm, which is known to be suitable for maximum likelihood estimation in NLMEM and also has nice theoretical properties. The main advantage of this hybrid procedure is to avoid a simulation step of unknown group labels required by a “full” version of SAEM. The resulting MSAEM (Mixture SAEM) algorithm is now implemented in the Monolix software. Several criteria for classification of subjects and estimation of individual parameters are also proposed. Numerical experiments on simulated data show that MSAEM performs well in a general framework of mixtures of NLMEM. Indeed, MSAEM provides an estimator close to the maximum likelihood estimator in very few iterations and is robust with regard to initialization. An application to pharmacokinetic (PK) data demonstrates the potential of the method for practical applications.  相似文献   

4.
A maximum likelihood methodology for the parameters of models with an intractable likelihood is introduced. We produce a likelihood-free version of the stochastic approximation expectation-maximization (SAEM) algorithm to maximize the likelihood function of model parameters. While SAEM is best suited for models having a tractable “complete likelihood” function, its application to moderately complex models is a difficult or even impossible task. We show how to construct a likelihood-free version of SAEM by using the “synthetic likelihood” paradigm. Our method is completely plug-and-play, requires almost no tuning and can be applied to both static and dynamic models.  相似文献   

5.
Parametric incomplete data models defined by ordinary differential equations (ODEs) are widely used in biostatistics to describe biological processes accurately. Their parameters are estimated on approximate models, whose regression functions are evaluated by a numerical integration method. Accurate and efficient estimations of these parameters are critical issues. This paper proposes parameter estimation methods involving either a stochastic approximation EM algorithm (SAEM) in the maximum likelihood estimation, or a Gibbs sampler in the Bayesian approach. Both algorithms involve the simulation of non-observed data with conditional distributions using Hastings–Metropolis (H–M) algorithms. A modified H–M algorithm, including an original local linearization scheme to solve the ODEs, is proposed to reduce the computational time significantly. The convergence on the approximate model of all these algorithms is proved. The errors induced by the numerical solving method on the conditional distribution, the likelihood and the posterior distribution are bounded. The Bayesian and maximum likelihood estimation methods are illustrated on a simulated pharmacokinetic nonlinear mixed-effects model defined by an ODE. Simulation results illustrate the ability of these algorithms to provide accurate estimates.  相似文献   

6.

We propose a semiparametric version of the EM algorithm under the semiparametric mixture model introduced by Anderson (1979, Biometrika , 66 , 17-26). It is shown that the sequence of proposed EM iterates, irrespective of the starting value, converges to the maximum semiparametric likelihood estimator of the vector of parameters in the semiparametric mixture model. The proposed EM algorithm preserves the appealing monotone convergence property of the standard EM algorithm and can be implemented by employing the standard logistic regression program. We present one example to demonstrate the performance of the proposed EM algorithm.  相似文献   

7.
This paper examines the formation of maximum likelihood estimates of cell means in analysis of variance problems for cells with missing observations. Methods of estimating the means for missing cells has a long history which includes iterative maximum likelihood techniques, approximation techniques and ad hoc techniques. The use of the EM algorithm to form maximum likelihood estimates has resolved most of the issues associated with this problem. Implementation of the EM algorithm entails specification of a reduced model. As demonstrated in this paper, when there are several missing cells, it is possible to specify a reduced model that results in an unidentifiable likelihood. The EM algorithm in this case does not converge, although the slow divergence may often be mistaken by the unwary as convergence. This paper presents a simple matrix method of determining whether or not the reduced model results in an identifiable likelihood, and consequently in an EM algorithm that converges. We also show the EM algorithm in this case to be equivalent to a method which yields a closed form solution.  相似文献   

8.
The maximum likelihood estimation of parameters of the Poisson binomial distribution, based on a sample with exact and grouped observations, is considered by applying the EM algorithm (Dempster et al, 1977). The results of Louis (1982) are used in obtaining the observed information matrix and accelerating the convergence of the EM algorithm substantially. The maximum likelihood estimation from samples consisting entirely of complete (Sprott, 1958) or grouped observations are treated as special cases of the estimation problem mentioned above. A brief account is given for the implementation of the EM algorithm when the sampling distribution is the Neyman Type A since the latter is a limiting form of the Poisson binomial. Numerical examples based on real data are included.  相似文献   

9.
The iteratively reweighting algorithm is one of the widely used algorithm to compute the M-estimates for the location and scatter parameters of a multivariate dataset. If the M estimating equations are the maximum likelihood estimating equations from some scale mixture of normal distributions (e.g. from a multivariate t-distribution), the iteratively reweighting algorithm is identified as an EM algorithm and the convergence behavior of which is well established. However, as Tyler (J. Roy. Statist. Soc. Ser. B 59 (1997) 550) pointed out, little is known about the theoretical convergence properties of the iteratively reweighting algorithms if it cannot be identified as an EM algorithm. In this paper, we consider the convergence behavior of the iteratively reweighting algorithm induced from the M estimating equations which cannot be identified as an EM algorithm. We give some general results on the convergence properties and, we show that convergence behavior of a general iteratively reweighting algorithm induced from the M estimating equations is similar to the convergence behavior of an EM algorithm even if it cannot be identified as an EM algorithm.  相似文献   

10.
Abstract.  The expectation-maximization (EM) algorithm is a popular approach for obtaining maximum likelihood estimates in incomplete data problems because of its simplicity and stability (e.g. monotonic increase of likelihood). However, in many applications the stability of EM is attained at the expense of slow, linear convergence. We have developed a new class of iterative schemes, called squared iterative methods (SQUAREM), to accelerate EM, without compromising on simplicity and stability. SQUAREM generally achieves superlinear convergence in problems with a large fraction of missing information. Globally convergent schemes are easily obtained by viewing SQUAREM as a continuation of EM. SQUAREM is especially attractive in high-dimensional problems, and in problems where model-specific analytic insights are not available. SQUAREM can be readily implemented as an 'off-the-shelf' accelerator of any EM-type algorithm, as it only requires the EM parameter updating. We present four examples to demonstrate the effectiveness of SQUAREM. A general-purpose implementation (written in R) is available.  相似文献   

11.
In the expectation–maximization (EM) algorithm for maximum likelihood estimation from incomplete data, Markov chain Monte Carlo (MCMC) methods have been used in change-point inference for a long time when the expectation step is intractable. However, the conventional MCMC algorithms tend to get trapped in local mode in simulating from the posterior distribution of change points. To overcome this problem, in this paper we propose a stochastic approximation Monte Carlo version of EM (SAMCEM), which is a combination of adaptive Markov chain Monte Carlo and EM utilizing a maximum likelihood method. SAMCEM is compared with the stochastic approximation version of EM and reversible jump Markov chain Monte Carlo version of EM on simulated and real datasets. The numerical results indicate that SAMCEM can outperform among the three methods by producing much more accurate parameter estimates and the ability to achieve change-point positions and estimates simultaneously.  相似文献   

12.
Summary.  We propose a generic on-line (also sometimes called adaptive or recursive) version of the expectation–maximization (EM) algorithm applicable to latent variable models of independent observations. Compared with the algorithm of Titterington, this approach is more directly connected to the usual EM algorithm and does not rely on integration with respect to the complete-data distribution. The resulting algorithm is usually simpler and is shown to achieve convergence to the stationary points of the Kullback–Leibler divergence between the marginal distribution of the observation and the model distribution at the optimal rate, i.e. that of the maximum likelihood estimator. In addition, the approach proposed is also suitable for conditional (or regression) models, as illustrated in the case of the mixture of linear regressions model.  相似文献   

13.
The paper is focussing on some recent developments in nonparametric mixture distributions. It discusses nonparametric maximum likelihood estimation of the mixing distribution and will emphasize gradient type results, especially in terms of global results and global convergence of algorithms such as vertex direction or vertex exchange method. However, the NPMLE (or the algorithms constructing it) provides also an estimate of the number of components of the mixing distribution which might be not desirable for theoretical reasons or might be not allowed from the physical interpretation of the mixture model. When the number of components is fixed in advance, the before mentioned algorithms can not be used and globally convergent algorithms do not exist up to now. Instead, the EM algorithm is often used to find maximum likelihood estimates. However, in this case multiple maxima are often occuring. An example from a meta-analyis of vitamin A and childhood mortality is used to illustrate the considerable, inferential importance of identifying the correct global likelihood. To improve the behavior of the EM algorithm we suggest a combination of gradient function steps and EM steps to achieve global convergence leading to the EM algorithm with gradient function update (EMGFU). This algorithms retains the number of components to be exactly k and typically converges to the global maximum. The behavior of the algorithm is highlighted at hand of several examples.  相似文献   

14.
In lifetime analysis of electric transformers, the maximum likelihood estimation has been proposed with the EM algorithm. However, it is not clear whether the EM algorithm offers a better solution compared to the simpler Newton-Raphson (NR) algorithm. In this article, the first objective is a systematic comparison of the EM algorithm with the NR algorithm in terms of convergence performance. The second objective is to examine the performance of Akaike's information criterion (AIC) for selecting a suitable distribution among candidate models via simulations. These methods are illustrated through the electric power transformer dataset.  相似文献   

15.
The EM algorithm is a popular method for computing maximum likelihood estimates or posterior modes in models that can be formulated in terms of missing data or latent structure. Although easy implementation and stable convergence help to explain the popularity of the algorithm, its convergence is sometimes notoriously slow. In recent years, however, various adaptations have significantly improved the speed of EM while maintaining its stability and simplicity. One especially successful method for maximum likelihood is known as the parameter expanded EM or PXEM algorithm. Unfortunately, PXEM does not generally have a closed form M-step when computing posterior modes, even when the corresponding EM algorithm is in closed form. In this paper we confront this problem by adapting the one-step-late EM algorithm to PXEM to establish a fast closed form algorithm that improves on the one-step-late EM algorithm by insuring monotone convergence. We use this algorithm to fit a probit regression model and a variety of dynamic linear models, showing computational savings of as much as 99.9%, with the biggest savings occurring when the EM algorithm is the slowest to converge.  相似文献   

16.
The EM algorithm is the standard method for estimating the parameters in finite mixture models. Yang and Pan [25] proposed a generalized classification maximum likelihood procedure, called the fuzzy c-directions (FCD) clustering algorithm, for estimating the parameters in mixtures of von Mises distributions. Two main drawbacks of the EM algorithm are its slow convergence and the dependence of the solution on the initial value used. The choice of initial values is of great importance in the algorithm-based literature as it can heavily influence the speed of convergence of the algorithm and its ability to locate the global maximum. On the other hand, the algorithmic frameworks of EM and FCD are closely related. Therefore, the drawbacks of FCD are the same as those of the EM algorithm. To resolve these problems, this paper proposes another clustering algorithm, which can self-organize local optimal cluster numbers without using cluster validity functions. These numerical results clearly indicate that the proposed algorithm is superior in performance of EM and FCD algorithms. Finally, we apply the proposed algorithm to two real data sets.  相似文献   

17.
In this article we investigate the relationship between the EM algorithm and the Gibbs sampler. We show that the approximate rate of convergence of the Gibbs sampler by Gaussian approximation is equal to that of the corresponding EM-type algorithm. This helps in implementing either of the algorithms as improvement strategies for one algorithm can be directly transported to the other. In particular, by running the EM algorithm we know approximately how many iterations are needed for convergence of the Gibbs sampler. We also obtain a result that under certain conditions, the EM algorithm used for finding the maximum likelihood estimates can be slower to converge than the corresponding Gibbs sampler for Bayesian inference. We illustrate our results in a number of realistic examples all based on the generalized linear mixed models.  相似文献   

18.
Vardi’s Expectation-Maximization (EM) algorithm is frequently used for computing the nonparametric maximum likelihood estimator of length-biased right-censored data, which does not admit a closed-form representation. The EM algorithm may converge slowly, particularly for heavily censored data. We studied two algorithms for accelerating the convergence of the EM algorithm, based on iterative convex minorant and Aitken’s delta squared process. Numerical simulations demonstrate that the acceleration algorithms converge more rapidly than the EM algorithm in terms of number of iterations and actual timing. The acceleration method based on a modification of Aitken’s delta squared performed the best under a variety of settings.  相似文献   

19.
The EM algorithm is a popular method for maximizing a likelihood in the presence of incomplete data. When the likelihood has multiple local maxima, the parameter space can be partitioned into domains of convergence, one for each local maximum. In this paper we investigate these domains for the location family generated by the t-distribution. We show that, perhaps somewhat surprisingly, these domains need not be connected sets. As an extreme case we give an example of a domain which consists of an infinite union of disjoint open intervals. Thus the convergence behaviour of the EM algorithm can be quite sensitive to the starting point.  相似文献   

20.
The established general results on convergence properties of the EM algorithm require the sequence of EM parameter estimates to fall in the interior of the parameter space over which the likelihood is being maximized. This paper presents convergence properties of the EM sequence of likelihood values and parameter estimates in constrained parameter spaces for which the sequence of EM parameter estimates may converge to the boundary of the constrained parameter space contained in the interior of the unconstrained parameter space. Examples of the behavior of the EM algorithm applied to such parameter spaces are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号