首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
In this study, a methodology has been proposed for risk analysis of dust explosion scenarios based on Bayesian network. Our methodology also benefits from a bow‐tie diagram to better represent the logical relationships existing among contributing factors and consequences of dust explosions. In this study, the risks of dust explosion scenarios are evaluated, taking into account common cause failures and dependencies among root events and possible consequences. Using a diagnostic analysis, dust particle properties, oxygen concentration, and safety training of staff are identified as the most critical root events leading to dust explosions. The probability adaptation concept is also used for sequential updating and thus learning from past dust explosion accidents, which is of great importance in dynamic risk assessment and management. We also apply the proposed methodology to a case study to model dust explosion scenarios, to estimate the envisaged risks, and to identify the vulnerable parts of the system that need additional safety measures.  相似文献   

2.
Compared to the remarkable progress in risk analysis of normal accidents, the risk analysis of major accidents has not been so well‐established, partly due to the complexity of such accidents and partly due to low probabilities involved. The issue of low probabilities normally arises from the scarcity of major accidents’ relevant data since such accidents are few and far between. In this work, knowing that major accidents are frequently preceded by accident precursors, a novel precursor‐based methodology has been developed for likelihood modeling of major accidents in critical infrastructures based on a unique combination of accident precursor data, information theory, and approximate reasoning. For this purpose, we have introduced an innovative application of information analysis to identify the most informative near accident of a major accident. The observed data of the near accident were then used to establish predictive scenarios to foresee the occurrence of the major accident. We verified the methodology using offshore blowouts in the Gulf of Mexico, and then demonstrated its application to dam breaches in the United Sates.  相似文献   

3.
Accidents with automatic production systems are reported to be on the order of one in a hundred or thousand robot-years, while fatal accidents are found to occur one or two orders of magnitude less frequently. Traditions in occupational safety tend to seek for safety targets in terms of zero severe accidents for automatic systems. Decision-making requires a risk assessment balancing potential risk reduction measures and costs within the cultural environment of a production company. This paper presents a simplified procedure which acts as a decision tool. The procedure is based on a risk concept approaching prevention both in a deterministic and in a probabilistic manner. Eight accident scenarios are shown to represent the potential accident processes involving robot interactions with people. Seven prevention policies are shown to cover the accident scenarios in principle. An additional probabilistic approach may indicate which extra safety measures can be taken against what risk reduction and additional costs. The risk evaluation process aims at achieving a quantitative acceptable risk level. For that purpose, three risk evaluation methods are discussed with respect to reaching broad consensus on the safety targets.  相似文献   

4.
This study presents probabilistic analysis of dam accidents worldwide in the period 1911–2016. The accidents are classified by the dam purpose and by the country cluster, where they occurred, distinguishing between the countries of the Organization for Economic Cooperation and Development (OECD) and nonmember countries (non-OECD without China). A Bayesian hierarchical approach is used to model distributions of frequency and severity for accidents. This approach treats accident data as a multilevel system with subsets sharing specific characteristics. To model accident probabilities for a particular dam characteristic, this approach samples data from the entire data set, borrowing the strength across data set and enabling to model distributions even for subsets with scarce data. The modelled frequencies and severities are combined in frequency-consequence curves, showing that accidents for all dam purposes are more frequent in non-OECD (without China) and their maximum consequences are larger than in OECD countries. Multipurpose dams also have higher frequencies and maximum consequences than single-purpose dams. In addition, the developed methodology explicitly models time dependence to identify trends in accident frequencies over the analyzed period. Downward trends are found for almost all dam purposes confirming that technological development and implementation of safety measures are likely to have a positive impact on dam safety. The results of the analysis provide insights for dam risk management and decision-making processes by identifying key risk factors related to country groups and dam purposes as well as changes over time.  相似文献   

5.
Risk-Based Ranking of Dominant Contributors to Maritime Pollution Events   总被引:2,自引:0,他引:2  
This report describes a conceptual approach for identifying dominant contributors to risk from maritime shipping of hazardous materials. Maritime transportation accidents are relatively common occurrences compared to more frequently analyzed contributors to public risk. Yet research on maritime safety and pollution incidents has not been guided by a systematic, risk-based approach. Maritime shipping accidents can be analyzed using event trees to group the accidents into "bins," or groups, of similar characteristics such as type of cargo, location of accident (e.g., harbor, inland waterway), type of accident (e.g., fire, collision, grounding), and size of release. The importance of specific types of events to each accident bin can be quantified. Then the overall importance of accident events to risk can be estimated by weighting the events' individual bin importance measures by the risk associated with each accident bin.  相似文献   

6.
The market share of Tietê–Paraná inland waterway (TPIW) in the transport matrix of the São Paulo state, Brazil, is currently only 0.6%, but it is expected to increase to 6% over the next 20 years. In this scenario, to identify and explore potential undesired events a risk assessment is necessary. Part of this involves assigning the probability of occurrence of events, which usually is accomplished by a frequentist approach. However, in many cases, this approach is not possible due to unavailable or nonrepresentative data. This is the case of the TPIW that even though an expressive accident history is available, a frequentist approach is not suitable due to differences between current operational conditions and those met in the past. Therefore, a subjective assessment is an option as allows for working independently of the historical data, thus delivering more reliable results. In this context, this article proposes a methodology for assessing the probability of occurrence of undesired events based on expert opinion combined with fuzzy analysis. This methodology defines a criterion to weighting the experts and, using the fuzzy logic, evaluates the similarities among the experts’ beliefs to be used in the aggregation process before the defuzzification that quantifies the probability of occurrence of the events based on the experts’ opinion. Moreover, the proposed methodology is applied to the real case of the TPIW and the results obtained from the elicited experts are compared with a frequentist approach evidencing the impact on the results when considering different interpretations of the probability.  相似文献   

7.
This article is based on a quantitative risk assessment (QRA) that was performed on a radioactive waste disposal area within the Western New York Nuclear Service Center in western New York State. The QRA results were instrumental in the decision by the New York State Energy Research and Development Authority to support a strategy of in‐place management of the disposal area for another decade. The QRA methodology adopted for this first of a kind application was a scenario‐based approach in the framework of the triplet definition of risk (scenarios, likelihoods, consequences). The measure of risk is the frequency of occurrence of different levels of radiation dose to humans at prescribed locations. The risk from each scenario is determined by (1) the frequency of disruptive events or natural processes that cause a release of radioactive materials from the disposal area; (2) the physical form, quantity, and radionuclide content of the material that is released during each scenario; (3) distribution, dilution, and deposition of the released materials throughout the environment surrounding the disposal area; and (4) public exposure to the distributed material and the accumulated radiation dose from that exposure. The risks of the individual scenarios are assembled into a representation of the risk from the disposal area. In addition to quantifying the total risk to the public, the analysis ranks the importance of each contributing scenario, which facilitates taking corrective actions and implementing effective risk management. Perhaps most importantly, quantification of the uncertainties is an intrinsic part of the risk results. This approach to safety analysis has demonstrated many advantages of applying QRA principles to assessing the risk of facilities involving hazardous materials.  相似文献   

8.
Human factors are widely regarded to be highly contributing factors to maritime accident prevention system failures. The conventional methods for human factor assessment, especially quantitative techniques, such as fault trees and bow-ties, are static and cannot deal with models with uncertainty, which limits their application to human factors risk analysis. To alleviate these drawbacks, in the present study, a new human factor analysis framework called multidimensional analysis model of accident causes (MAMAC) is introduced. MAMAC combines the human factors analysis and classification system and business process management. In addition, intuitionistic fuzzy set theory and Bayesian Network are integrated into MAMAC to form a comprehensive dynamic human factors analysis model characterized by flexibility and uncertainty handling. The proposed model is tested on maritime accident scenarios from a sand carrier accident database in China to investigate the human factors involved, and the top 10 most highly contributing primary events associated with the human factors leading to sand carrier accidents are identified. According to the results of this study, direct human factors, classified as unsafe acts, are not a focus for maritime investigators and scholars. Meanwhile, unsafe preconditions and unsafe supervision are listed as the top two considerations for human factors analysis, especially for supervision failures of shipping companies and ship owners. Moreover, potential safety countermeasures for the most highly contributing human factors are proposed in this article. Finally, an application of the proposed model verifies its advantages in calculating the failure probability of accidents induced by human factors.  相似文献   

9.
After the Seveso disaster occurred more than 40 years ago, there has been an increasing awareness of the potential impacts that similar accident events can occur in a wide range of process establishments, where the handling and production of hazardous substances pose a real threat to society and the environment. In these industrial sites denominated “Seveso sites,” the urgent need for an effective strategy emerged markedly to handle hazardous activities and to ensure safe conditions. Since then, the main challenging research issues have focused on how to prevent such accident events and how to mitigate their consequences leading to the development of many risk assessment methodologies. In recent years, researchers and practitioners have tried to provide useful overviews of the existing risk assessment methodologies proposing several reviews. However, these reviews are not exhaustive because they are either dated or focus only on one specific topic (e.g., liquefied natural gas, domino effect, etc.). This work aims to overcome the limitations of the current reviews by providing an up-to-date and comprehensive overview of the risk assessment methodologies for handling hazardous substances within the European industry. In particular, we have focused on the current techniques for hazards and accident scenarios identification, as well as probability and consequence analyses for both onshore and offshore installations. Thus, we have identified the research streams that have characterized the activities of researchers and practitioners over the years, and we have then presented and discussed the different risk assessment methodologies available concerning the research stream that they belong to.  相似文献   

10.
11.
Underlying information about failure, including observations made in free text, can be a good source for understanding, analyzing, and extracting meaningful information for determining causation. The unstructured nature of natural language expression demands advanced methodology to identify its underlying features. There is no available solution to utilize unstructured data for risk assessment purposes. Due to the scarcity of relevant data, textual data can be a vital learning source for developing a risk assessment methodology. This work addresses the knowledge gap in extracting relevant features from textual data to develop cause–effect scenarios with minimal manual interpretation. This study applies natural language processing and text-mining techniques to extract features from past accident reports. The extracted features are transformed into parametric form with the help of fuzzy set theory and utilized in Bayesian networks as prior probabilities for risk assessment. An application of the proposed methodology is shown in microbiologically influenced corrosion-related incident reports available from the Pipeline and Hazardous Material Safety Administration database. In addition, the trained named entity recognition (NER) model is verified on eight incidents, showing a promising preliminary result for identifying all relevant features from textual data and demonstrating the robustness and applicability of the NER method. The proposed methodology can be used in domain-specific risk assessment to analyze, predict, and prevent future mishaps, ameliorating overall process safety.  相似文献   

12.
A comprehensive methodology for economic consequence analysis with appropriate models for risk analysis of process systems is proposed. This methodology uses loss functions to relate process deviations in a given scenario to economic losses. It consists of four steps: definition of a scenario, identification of losses, quantification of losses, and integration of losses. In this methodology, the process deviations that contribute to a given accident scenario are identified and mapped to assess potential consequences. Losses are assessed with an appropriate loss function (revised Taguchi, modified inverted normal) for each type of loss. The total loss is quantified by integrating different loss functions. The proposed methodology has been examined on two industrial case studies. Implementation of this new economic consequence methodology in quantitative risk assessment will provide better understanding and quantification of risk. This will improve design, decision making, and risk management strategies.  相似文献   

13.
A large number of PRA studies have been completed for specific plants at specific sites. From these studies, taken individually or collectively, many significant insights have evolved into items important to risk and safety. The content of this paper is primarily based on the material contained in the EPRI funded review of five PRA studies: Big Rock Point, Zion, Limerick, Grand Gulf, and Arkansas Nuclear One. The first three were the utility sponsored studies publicly available at the time of project initiation while the other two were deemed representative of the NRC's RSSMAP and IREP programs respectively. The results of PRA studies are usually expressed in terms of core melt frequencies, radionuclide release frequencies, and frequencies of occurrence of different reactor accident consequences (e.g., early and latent fatalities) depending on the level of PRA. These subjects are prominently addressed in this paper. One of the results of a PRA study is identification of a relatively small number of accident sequences that represent the dominant contributors to core melt. An analysis of the salient features of the dominant accident sequences from eleven PRA's yielded a characterization of accident sequence categories discussed at some length. Impact of external events is discussed very briefly. Next to an explicit quantification of public risk or core melt frequency, the identification of specific safety concerns and the evaluation of possible solutions to implement risk management are probably the best recognized and most widely used applications of PRA. Several illustrative examples are briefly discussed. Human interactions are extremely important contributors to safety and reliability of the plants. A review of PRA studies concluded that it was necessary to account for five types of human interactions; some of which may mitigate while others may exacerbate an accident sequence.  相似文献   

14.
Several major risk studies have been performed in recent years in the maritime transportation domain. These studies have had significant impact on management practices in the industry. The first, the Prince William Sound risk assessment, was reviewed by the National Research Council and found to be promising but incomplete, as the uncertainty in its results was not assessed. The difficulty in assessing this uncertainty is the different techniques that need to be used to model risk in this dynamic and data-scarce application area. In previous articles, we have developed the two pieces of methodology necessary to assess uncertainty in maritime risk assessment, a Bayesian simulation of the occurrence of situations with accident potential and a Bayesian multivariate regression analysis of the relationship between factors describing these situations and expert judgments of accident risk. In this article, we combine the methods to perform a full-scale assessment of risk and uncertainty for two case studies. The first is an assessment of the effects of proposed ferry service expansions in San Francisco Bay. The second is an assessment of risk for the Washington State Ferries, the largest ferry system in the United States.  相似文献   

15.
This study examines and analyzes marine accidents that have occurred over the past 20 years in the Black Sea. Geographic information system, human factor analysis and classification system (HFACS), and Bayesian network models are used to analyze the marine accidents. The most important feature distinguishing this study from other studies is that this is the first study to analyze accidents that have occurred across the whole Black Sea. Another important feature is the application of a new HFACS structure to reveal accident formation patterns. The results of this study indicate that accidents occurred in high concentrations in coastal regions of the Black Sea, especially in the Kerch Strait, Novorossiysk, Kilyos, Constanta, Riva, and Batumi regions. The formation of grounding and sinking accidents has been found to be similar in nature; the use of inland and old vessels has been highlighted as important factors in sinking and grounding incidents. However, the sequence of events leading to collision-contact accidents differs from the sequence of events resulting in grounding and sinking accidents. This study aims to provide information to the maritime industry regarding the occurrence of maritime incidents in the Black Sea, in order to assist with reduction and prevention of the marine accidents.  相似文献   

16.
Over the past decade, terrorism risk has become a prominent consideration in protecting the well‐being of individuals and organizations. More recently, there has been interest in not only quantifying terrorism risk, but also placing it in the context of an all‐hazards environment in which consideration is given to accidents and natural hazards, as well as intentional acts. This article discusses the development of a regional terrorism risk assessment model designed for this purpose. The approach taken is to model terrorism risk as a dependent variable, expressed in expected annual monetary terms, as a function of attributes of population concentration and critical infrastructure. This allows for an assessment of regional terrorism risk in and of itself, as well as in relation to man‐made accident and natural hazard risks, so that mitigation resources can be allocated in an effective manner. The adopted methodology incorporates elements of two terrorism risk modeling approaches (event‐based models and risk indicators), producing results that can be utilized at various jurisdictional levels. The validity, strengths, and limitations of the model are discussed in the context of a case study application within the United States.  相似文献   

17.
Risk Analysis for Critical Asset Protection   总被引:2,自引:0,他引:2  
This article proposes a quantitative risk assessment and management framework that supports strategic asset-level resource allocation decision making for critical infrastructure and key resource protection. The proposed framework consists of five phases: scenario identification, consequence and criticality assessment, security vulnerability assessment, threat likelihood assessment, and benefit-cost analysis. Key innovations in this methodology include its initial focus on fundamental asset characteristics to generate an exhaustive set of plausible threat scenarios based on a target susceptibility matrix (which we refer to as asset-driven analysis) and an approach to threat likelihood assessment that captures adversary tendencies to shift their preferences in response to security investments based on the expected utilities of alternative attack profiles assessed from the adversary perspective. A notional example is provided to demonstrate an application of the proposed framework. Extensions of this model to support strategic portfolio-level analysis and tactical risk analysis are suggested.  相似文献   

18.
This study tries to assess the risk of deaths and injuries from motor vehicle accidents associated with an evacuation of population groups in case of nuclear plant accidents. The risk per person–km is evaluated using: (a) data from previous evacuation: information from Soufriere evacuation (Guadeloupe Island 1976) and Mississauga (1979), added to Hans and Sell's data: no road accident occurred for a sample of 1,500,000 persons; (b) national recording system for motor vehicle accident: the rates of 2.2 10 -8 deaths per person–km and 32 10-8 injuries per person–km is calculated as an average. These last rates in France overestimate the number of casualties. A reasonable hypothesis is to assume that the probability of road accident occurrence follows a Poisson distribution, as these events are independent and unfrequent, as no accident was observed in a sample of 1,500,000 persons the probability is between 0 and an upper value of 0.24 10-8 deaths per person-km and 3.29 10-8 injuries per person–km. The average and maximum population involved within different radii around French and U.S. Nuclear power sites are taken as a sample size in order to study the total risk of deaths and injuries in the hypothesis of an evacuation being necessary to protect the populations.  相似文献   

19.
With the application of risk management and accident response in the railway domain, risk detection and prevention have become key research topics. Many dangers and associated risk sources must be considered in collaborative scenarios of heavy-haul railways. In these scenarios, (1) various risk sources are involved in different data sources, and context affects their occurrence, (2) the relationships between contexts and risk sources in the accident cause mechanism need to be explicitly defined, and (3) risk knowledge reasoning needs to integrate knowledge from multiple data sources to achieve comprehensive results. To express the association rules among core concepts, this article constructs two ontologies: The accident-risk ontology and the context ontology. Concept analysis is based on railway domain knowledge and accident analysis reports. To sustainably integrate knowledge, an integrated evolutionary model called scenario-risk-accident chain ontology (SRAC) is constructed by introducing new data sources. The SRAC is integrated through expert rules between the two ontologies, and its evolution process involves new knowledge through a new risk source database. After three versions of the upgrade process, potential risk sources can be mined and evaluated in specific contexts. To evaluate the risk source level, a long short-term memory (LSTM) neural network model is used to capture context and risk text features. A model comparison for different neural network structures is performed to find the optimal evaluation results. Finally, new concepts, such as risk source level, and new instances are updated in the context-aware risk knowledge reasoning framework.  相似文献   

20.
Domino effects are low‐probability high‐consequence accidents causing severe damage to humans, process plants, and the environment. Because domino effects affect large areas and are difficult to control, preventive safety measures have been given priority over mitigative measures. As a result, safety distances and safety inventories have been used as preventive safety measures to reduce the escalation probability of domino effects. However, these safety measures are usually designed considering static accident scenarios. In this study, we show that compared to a static worst‐case accident analysis, a dynamic consequence analysis provides a more rational approach for risk assessment and management of domino effects. This study also presents the application of Bayesian networks and conflict analysis to risk‐based allocation of chemical inventories to minimize the consequences and thus to reduce the escalation probability. It emphasizes the risk management of chemical inventories as an inherent safety measure, particularly in existing process plants where the applicability of other safety measures such as safety distances is limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号