首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A new technique for deriving exogenous components of mortality risks from national vital statistics has been developed. Each observed death rate Dij (where i corresponds to calendar time (year or interval of years) and j denotes the number of corresponding age group) was represented as Dij=Aj+BiCj, and unknown quantities Aj, Bi, and Cj were estimated by a special procedure using the least-squares principle. The coefficients of variation do not exceed 10%. It is shown that the term Aj can be interpreted as the endogenous and the second term BiCj as the exogenous components of the death rate. The aggregate of endogenous components Aj can be described by a regression function, corresponding to the Gompertz-Makeham law, A(τ) =γ+β· eατ, where γ, β, and α are constants, τ is age, AττAττAj, and τj, is the value of age τ in jth age group. The coefficients of variation for such a representation does not exceed 4%. An analysis of exogenous risk levels in the Moscow and Russian populations during 1980–1995 shows that since 1992 all components of exogenous risk in the Moscow population had been increasing up to 1994. The greatest contribution to the total level of exogenous risk was lethal diseases, and their death rate was 387 deaths per 100,000 persons in 1994, i.e., 61.9% of all deaths. The dynamics of exogenous mortality risk change during 1990–1994 in the Moscow population and in the Russian population without Moscow had been identical: the risk had been increasing, and its value in the Russian population had been higher than that in the Moscow population.  相似文献   

2.
The objective of this article is to characterize the risk of infection from airborne Mycobacterium tuberculosis bacilli exposure in commercial passenger trains based on a risk‐based probabilistic transmission modeling. We investigated the tuberculosis (TB) infection risks among commercial passengers by inhaled aerosol M. tuberculosis bacilli and quantify the patterns of TB transmission in Taiwan High Speed Rail (THSR). A deterministic Wells‐Riley mathematical model was used to account for the probability of infection risk from M. tuberculosis bacilli by linking the cough‐generated aerosol M. tuberculosis bacilli concentration and particle size distribution. We found that (i) the quantum generation rate of TB was estimated with a lognormal distribution of geometric mean (GM) of 54.29 and geometric standard deviation (GSD) of 3.05 quantum/h at particle size ≤ 5 μm and (ii) the basic reproduction numbers (R0) were estimated to be 0.69 (0.06–6.79), 2.82 (0.32–20.97), and 2.31 (0.25–17.69) for business, standard, and nonreserved cabins, respectively. The results indicate that commercial passengers taking standard and nonreserved cabins had higher transmission risk than those in business cabins based on conservatism. Our results also reveal that even a brief exposure, as in the bronchoscopy cases, can also result in a transmission when the quantum generation rate is high. This study could contribute to a better understanding of the dynamics of TB transmission in commercial passenger trains by assessing the relationship between TB infectiousness, passenger mobility, and key model parameters such as seat occupancy, ventilation rate, and exposure duration.  相似文献   

3.
The purpose of this article is to provide a risk‐based predictive model to assess the impact of false mussel Mytilopsis sallei invasions on hard clam Meretrix lusoria farms in the southwestern region of Taiwan. The actual spread of invasive false mussel was predicted by using analytical models based on advection‐diffusion and gravity models. The proportion of hard clam colonized and infestation by false mussel were used to characterize risk estimates. A mortality model was parameterized to assess hard clam mortality risk characterized by false mussel density and infestation intensity. The published data were reanalyzed to parameterize a predictive threshold model described by a cumulative Weibull distribution function that can be used to estimate the exceeding thresholds of proportion of hard clam colonized and infestation. Results indicated that the infestation thresholds were 2–17 ind clam?1 for adult hard clams, whereas 4 ind clam?1 for nursery hard clams. The average colonization thresholds were estimated to be 81–89% for cultivated and nursery hard clam farms, respectively. Our results indicated that false mussel density and infestation, which caused 50% hard clam mortality, were estimated to be 2,812 ind m?2 and 31 ind clam?1, respectively. This study further indicated that hard clam farms that are close to the coastal area have at least 50% probability for 43% mortality caused by infestation. This study highlighted that a probabilistic risk‐based framework characterized by probability distributions and risk curves is an effective representation of scientific assessments for farmed hard clam in response to the nonnative false mussel invasion.  相似文献   

4.
Some volatile N‐nitrosamines, primarily N‐nitrosodimethylamine (NDMA), are recognized as products of drinking water treatment at ng/L levels and as known carcinogens. The U.S. EPA has identified the N‐nitrosamines as contaminants being considered for regulation as a group under the Safe Drinking Water Act. Nitrosamines are common dietary components, and a major database (over 18,000 drinking water samples) has recently been created under the Unregulated Contaminant Monitoring Rule. A Monte Carlo modeling analysis in 2007 found that drinking water contributed less than 2.8% of ingested NDMA and less than 0.02% of total NDMA exposure when estimated endogenous formation was considered. Our analysis, based upon human blood concentrations, indicates that endogenous NDMA production is larger than expected. The blood‐based estimates are within the range that would be calculated from estimates based on daily urinary NDMA excretion and an estimate based on methylated guanine in DNA of lymphocytes from human volunteers. Our analysis of ingested NDMA from food and water based on Monte Carlo modeling with more complete data input shows that drinking water contributes a mean proportion of the lifetime average daily NDMA dose ranging from between 0.0002% and 0.001% for surface water systems using free chlorine or between 0.001% and 0.01% for surface water systems using chloramines. The proportions of average daily dose are higher for infants (zero to six months) than other age cohorts, with the highest mean up to 0.09% (upper 95th percentile of 0.3%).  相似文献   

5.
We consider the bootstrap unit root tests based on finite order autoregressive integrated models driven by iid innovations, with or without deterministic time trends. A general methodology is developed to approximate asymptotic distributions for the models driven by integrated time series, and used to obtain asymptotic expansions for the Dickey–Fuller unit root tests. The second‐order terms in their expansions are of stochastic orders Op(n−1/4) and Op(n−1/2), and involve functionals of Brownian motions and normal random variates. The asymptotic expansions for the bootstrap tests are also derived and compared with those of the Dickey–Fuller tests. We show in particular that the bootstrap offers asymptotic refinements for the Dickey–Fuller tests, i.e., it corrects their second‐order errors. More precisely, it is shown that the critical values obtained by the bootstrap resampling are correct up to the second‐order terms, and the errors in rejection probabilities are of order o(n−1/2) if the tests are based upon the bootstrap critical values. Through simulations, we investigate how effective is the bootstrap correction in small samples.  相似文献   

6.
Early in the pandemic of coronavirus disease 2019 (COVID-19), face masks were used extensively by the general public in several Asian countries. The lower transmission rate of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Asian countries compared with Western countries suggested that the wider community use of face masks has the potential to decrease transmission of SARS-CoV-2. A risk assessment model named Susceptible, Exposed, Infectious, Recovered (SEIR) model is used to quantitatively evaluate the potential impact of community face masks on SARS-CoV-2 reproduction number (R0) and peak number of infectious persons. For a simulated population of one million, the model showed a reduction in R0 of 49% and 50% when 60% and 80% of the population wore masks, respectively. Moreover, we present a modified model that considers the effect of mask-wearing after community vaccination. Interestingly mask-wearing still provided a considerable benefit in lowering the number of infectious individuals. The results of this research are expected to help public health officials in making prompt decisions involving resource allocation and crafting legislation.  相似文献   

7.
Emergency vaccination is an effective control strategy for foot‐and‐mouth disease (FMD) epidemics in densely populated livestock areas, but results in a six‐month waiting period before exports can be resumed, incurring severe economic consequences for pig exporting countries. In the European Union, a one‐month waiting period has been discussed based on negative test results in a final screening. The objective of this study was to analyze the risk of exporting FMD‐infected pig carcasses from a vaccinated area: (1) directly after final screening and (2) after a six‐month waiting period. A risk model has been developed to estimate the probability that a processed carcass was derived from an FMD‐infected pig (Pcarc). Key variables were herd prevalence (PH), within‐herd prevalence (PA), and the probability of detection at slaughter (PSL). PH and PA were estimated using Bayesian inference under the assumption that, despite all negative test results, ≥1 infected pigs were present. Model calculations indicated that Pcarc was on average 2.0 × 10?5 directly after final screening, and 1.7 × 10?5 after a six‐month waiting period. Therefore, the additional waiting time did not substantially reduce Pcarc. The estimated values were worst‐case scenarios because only viraemic pigs pose a risk for disease transmission, while seropositive pigs do not. The risk of exporting FMD via pig carcasses from a vaccinated area can further be reduced by heat treatment of pork and/or by excluding high‐risk pork products from export.  相似文献   

8.
The relationship between workplace characteristics and nocturnal sleep in a working population was investigated. Data from 709 employees (mean age=39 years; 87% men) from two German companies were analysed at the entry of the longitudinal cohort study (overall accrual 73%). We investigated the association between the effort-reward imbalance model at work (Siegrist, ) and self-reported sleep quality and sleep disturbances, as assessed by the Jenkins Sleep Quality Index. Effort and overcommitment were found to be higher, and reward was lower in participants with lower (N=328) vs. higher sleep quality (N=381), as well as in participants with (N=217) vs. without (N=492) disturbed sleep (all ps<.001). In regression analyses, lower sleep quality (R 2=.33) and sleep disturbances (R 2 Nagelkerke=.33) were predicted by older age, female gender (only significant for sleep disturbances), shift-work, lower physical and mental health functioning, and higher overcommitment. Individuals were 1.7 times more likely to report disturbed sleep per standard deviation increase in overcommitment. Gender-stratified analyses revealed that higher overcommitment was associated with unfavourable sleep in men, while in women poor sleep was related to lower reward. The findings suggest that overcommitment at work interferes with restful sleep in men, while in women disturbed sleep may be associated with the amount of overcommitment and perceived job reward and sleep quality associated with the perceived reward.  相似文献   

9.
We study the effect of railroad access on urban population growth. Using GIS techniques, we match triennial population data for roughly 1,000 cities in 19th‐century Prussia to georeferenced maps of the German railroad network. We find positive short‐ and long‐term effects of having a station on urban growth for different periods during 1840–1871. Causal effects of (potentially endogenous) railroad access on city growth are identified using propensity score matching, instrumental variables, and fixed‐effects estimation techniques. Our instrument identifies exogenous variation in railroad access by constructing straight‐line corridors between nodes. Counterfactual models using pre‐railroad growth yield no evidence to support the hypothesis that railroads appeared as a consequence of a previous growth spurt.  相似文献   

10.
Toxoplasma gondii is a protozoan parasite that is responsible for approximately 24% of deaths attributed to foodborne pathogens in the United States. It is thought that a substantial portion of human T. gondii infections is acquired through the consumption of meats. The dose‐response relationship for human exposures to T. gondii‐infected meat is unknown because no human data are available. The goal of this study was to develop and validate dose‐response models based on animal studies, and to compute scaling factors so that animal‐derived models can predict T. gondii infection in humans. Relevant studies in literature were collected and appropriate studies were selected based on animal species, stage, genotype of T. gondii, and route of infection. Data were pooled and fitted to four sigmoidal‐shaped mathematical models, and model parameters were estimated using maximum likelihood estimation. Data from a mouse study were selected to develop the dose‐response relationship. Exponential and beta‐Poisson models, which predicted similar responses, were selected as reasonable dose‐response models based on their simplicity, biological plausibility, and goodness fit. A confidence interval of the parameter was determined by constructing 10,000 bootstrap samples. Scaling factors were computed by matching the predicted infection cases with the epidemiological data. Mouse‐derived models were validated against data for the dose‐infection relationship in rats. A human dose‐response model was developed as P (d) = 1–exp (–0.0015 × 0.005 × d) or P (d) = 1–(1 + d × 0.003 / 582.414)?1.479. Both models predict the human response after consuming T. gondii‐infected meats, and provide an enhanced risk characterization in a quantitative microbial risk assessment model for this pathogen.  相似文献   

11.
《Risk analysis》2018,38(8):1738-1757
We developed a risk assessment of human salmonellosis associated with consumption of alfalfa sprouts in the United States to evaluate the public health impact of applying treatments to seeds (0–5‐log10 reduction in Salmonella ) and testing spent irrigation water (SIW) during production. The risk model considered variability and uncertainty in Salmonella contamination in seeds, Salmonella growth and spread during sprout production, sprout consumption, and Salmonella dose response. Based on an estimated prevalence of 2.35% for 6.8 kg seed batches and without interventions, the model predicted 76,600 (95% confidence interval (CI) 15,400 – 248,000) cases/year. Risk reduction (by 5 ‐ to 7‐fold) predicted from a 1‐log10 seed treatment alone was comparable to SIW testing alone, and each additional 1‐log10 seed treatment was predicted to provide a greater risk reduction than SIW testing. A 3‐log10 or a 5‐log10 seed treatment reduced the predicted cases/year to 139 (95% CI 33 – 448) or 1.4 (95% CI <1 – 4.5), respectively. Combined with SIW testing, a 3‐log10 or 5‐log10 seed treatment reduced the cases/year to 45 (95% CI 10–146) or <1 (95% CI <1 – 1.5), respectively. If the SIW coverage was less complete (i.e., less representative), a smaller risk reduction was predicted, e.g., a combined 3‐log10 seed treatment and SIW testing with 20% coverage resulted in an estimated 92 (95% CI 22 – 298) cases/year. Analysis of alternative scenarios using different assumptions for key model inputs showed that the predicted relative risk reductions are robust. This risk assessment provides a comprehensive approach for evaluating the public health impact of various interventions in a sprout production system.  相似文献   

12.
We analyze a dynamic stochastic general‐equilibrium (DSGE) model with an externality—through climate change—from using fossil energy. Our central result is a simple formula for the marginal externality damage of emissions (or, equivalently, for the optimal carbon tax). This formula, which holds under quite plausible assumptions, reveals that the damage is proportional to current GDP, with the proportion depending only on three factors: (i) discounting, (ii) the expected damage elasticity (how many percent of the output flow is lost from an extra unit of carbon in the atmosphere), and (iii) the structure of carbon depreciation in the atmosphere. Thus, the stochastic values of future output, consumption, and the atmospheric CO2 concentration, as well as the paths of technology (whether endogenous or exogenous) and population, and so on, all disappear from the formula. We find that the optimal tax should be a bit higher than the median, or most well‐known, estimates in the literature. We also formulate a parsimonious yet comprehensive and easily solved model allowing us to compute the optimal and market paths for the use of different sources of energy and the corresponding climate change. We find coal—rather than oil—to be the main threat to economic welfare, largely due to its abundance. We also find that the costs of inaction are particularly sensitive to the assumptions regarding the substitutability of different energy sources and technological progress.  相似文献   

13.
Suppose S is a subset of a metric space X with metric d. For each subset D⊆{d(x,y):x,yS,xy}, the distance graph G(S,D) is the graph with vertex set S and edge set E(S,D)={xy:x,yS,d(x,y)∈D}. The current paper studies distance graphs on the n-space R 1 n with 1-norm. In particular, most attention is paid to the subset Z 1 n of all lattice points of R 1 n . The results obtained include the degrees of vertices, components, and chromatic numbers of these graphs. Dedicated to Professor Frank K. Hwang on the occasion of his 65th birthday. Supported in part by the National Science Council under grant NSC-94-2115-M-002-015. Taida Institue for Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan. National Center for Theoretical Sciences, Taipei Office.  相似文献   

14.
Lori Peek 《Risk analysis》2011,31(12):1907-1918
This study evaluated how individuals living on the Gulf Coast perceived hurricane risk after Hurricanes Katrina and Rita. It was hypothesized that hurricane outlook and optimistic bias for hurricane risk would be associated positively with distance from the Katrina‐Rita landfall (more optimism at greater distance), controlling for historically based hurricane risk and county population density, demographics, individual hurricane experience, and dispositional optimism. Data were collected in January 2006 through a mail survey sent to 1,375 households in 41 counties on the coast (n = 824, 60% response). The analysis used hierarchal regression to test hypotheses. Hurricane history and population density had no effect on outlook; individuals who were male, older, and with higher household incomes were associated with lower risk perception; individual hurricane experience and personal impacts from Katrina and Rita predicted greater risk perception; greater dispositional optimism predicted more optimistic outlook; distance had a small effect but predicted less optimistic outlook at greater distance (model R2= 0.21). The model for optimistic bias had fewer effects: age and community tenure were significant; dispositional optimism had a positive effect on optimistic bias; distance variables were not significant (model R2= 0.05). The study shows that an existing measure of hurricane outlook has utility, hurricane outlook appears to be a unique concept from hurricane optimistic bias, and proximity has at most small effects. Future extension of this research will include improved conceptualization and measurement of hurricane risk perception and will bring to focus several concepts involving risk communication.  相似文献   

15.
《Risk analysis》2018,38(4):638-652
The objective of this research was to analyze the impact of different cooking procedures (i.e., gas hob and traditional static oven) and levels of cooking (i.e., rare, medium, and well‐done) on inactivation of Listeria monocytogenes and Salmonella in pork loin chops. Moreover, the consumer's exposure to both microorganisms after simulation of meat leftover storage at home was assessed. The results showed that well‐done cooking in a static oven was the only treatment able to inactivate the tested pathogens. The other cooking combinations allowed to reach in the product temperatures always ≥73.6 °C, decreasing both pathogens between 6 log10 cfu/g and 7 log10 cfu/g. However, according to simulation results, the few cells surviving cooking treatments can multiply during storage by consumers up to 1 log10 cfu/g, with probabilities of 0.059 (gas hob) and 0.035 (static oven) for L. monocytogenes and 0.049 (gas hob) and 0.031 (static oven) for Salmonella . The key factors affecting consumer exposure in relation to storage practices were probability of pathogen occurrence after cooking, doneness degree, time of storage, and time of storage at room temperature. The results of this study can be combined with prevalence data and dose–response models in risk assessment models and included in guidelines for consumers on practices to be followed to manage cooking of pork meat at home.  相似文献   

16.
The health‐related damages associated with emissions from coal‐fired power plants can vary greatly across facilities as a function of plant, site, and population characteristics, but the degree of variability and the contributing factors have not been formally evaluated. In this study, we modeled the monetized damages associated with 407 coal‐fired power plants in the United States, focusing on premature mortality from fine particulate matter (PM2.5). We applied a reduced‐form chemistry‐transport model accounting for primary PM2.5 emissions and the influence of sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions on secondary particulate formation. Outputs were linked with a concentration‐response function for PM2.5‐related mortality that incorporated nonlinearities and model uncertainty. We valued mortality with a value of statistical life approach, characterizing and propagating uncertainties in all model elements. At the median of the plant‐specific uncertainty distributions, damages across plants ranged from $30,000 to $500,000 per ton of PM2.5, $6,000 to $50,000 per ton of SO2, $500 to $15,000 per ton of NOx, and $0.02 to $1.57 per kilowatt‐hour of electricity generated. Variability in damages per ton of emissions was almost entirely explained by population exposure per unit emissions (intake fraction), which itself was related to atmospheric conditions and the population size at various distances from the power plant. Variability in damages per kilowatt‐hour was highly correlated with SO2 emissions, related to fuel and control technology characteristics, but was also correlated with atmospheric conditions and population size at various distances. Our findings emphasize that control strategies that consider variability in damages across facilities would yield more efficient outcomes.  相似文献   

17.
To quantify the on‐road PM2.5‐related premature mortality at a national scale, previous approaches to estimate concentrations at a 12‐km × 12‐km or larger grid cell resolution may not fully characterize concentration hotspots that occur near roadways and thus the areas of highest risk. Spatially resolved concentration estimates from on‐road emissions to capture these hotspots may improve characterization of the associated risk, but are rarely used for estimating premature mortality. In this study, we compared the on‐road PM2.5‐related premature mortality in central North Carolina with two different concentration estimation approaches—(i) using the Community Multiscale Air Quality (CMAQ) model to model concentration at a coarser resolution of a 36‐km × 36‐km grid resolution, and (ii) using a hybrid of a Gaussian dispersion model, CMAQ, and a space–time interpolation technique to provide annual average PM2.5 concentrations at a Census‐block level (~105,000 Census blocks). The hybrid modeling approach estimated 24% more on‐road PM2.5‐related premature mortality than CMAQ. The major difference is from the primary on‐road PM2.5 where the hybrid approach estimated 2.5 times more primary on‐road PM2.5‐related premature mortality than CMAQ due to predicted exposure hotspots near roadways that coincide with high population areas. The results show that 72% of primary on‐road PM2.5 premature mortality occurs within 1,000 m from roadways where 50% of the total population resides, highlighting the importance to characterize near‐road primary PM2.5 and suggesting that previous studies may have underestimated premature mortality due to PM2.5 from traffic‐related emissions.  相似文献   

18.
To prevent and control foodborne diseases, there is a fundamental need to identify the foods that are most likely to cause illness. The goal of this study was to rank 25 commonly consumed food products associated with Salmonella enterica contamination in the Central Region of Mexico. A multicriteria decision analysis (MCDA) framework was developed to obtain an S. enterica risk score for each food product based on four criteria: probability of exposure to S. enterica through domestic food consumption (Se); S. enterica growth potential during home storage (Sg); per capita consumption (Pcc); and food attribution of S. enterica outbreak (So). Risk scores were calculated by the equation Se*W1+Sg*W2+Pcc*W3+So*W4, where each criterion was assigned a normalized value (1–5) and the relative weights (W) were defined by 22 experts’ opinion. Se had the largest effect on the risk score being the criterion with the highest weight (35%; IC95% 20%–60%), followed by So (24%; 5%–50%), Sg (23%; 10%–40%), and Pcc (18%; 10%–35%). The results identified chicken (4.4 ± 0.6), pork (4.2 ± 0.6), and beef (4.2 ± 0.5) as the highest risk foods, followed by seed fruits (3.6 ± 0.5), tropical fruits (3.4 ± 0.4), and dried fruits and nuts (3.4 ± 0.5), while the food products with the lowest risk were yogurt (2.1 ± 0.3), chorizo (2.1 ± 0.4), and cream (2.0 ± 0.3). Approaches with expert-based weighting and equal weighting showed good correlation (R= 0.96) and did not show significant differences among the ranking order in the top 20 tier. This study can help risk managers select interventions and develop targeted surveillance programs against S. enterica in high-risk food products.  相似文献   

19.
This study explored how individuals in Taiwan perceive the risk of earthquake and the relationship of past earthquake experience and gender to risk perception. Participants (n= 1,405), including earthquake survivors and those in the general population without prior direct earthquake exposure, were selected and interviewed through a computer‐assisted telephone interviewing procedure using a random sampling and stratification method covering all 24 regions of Taiwan. A factor analysis of the interview data yielded a two‐factor structure of risk perception in regard to earthquake. The first factor, “personal impact,” encompassed perception of threat and fear related to earthquakes. The second factor, “controllability,” encompassed a sense of efficacy of self‐protection in regard to earthquakes. The findings indicated prior earthquake survivors and females reported higher scores on the personal impact factor than males and those with no prior direct earthquake experience, although there were no group differences on the controllability factor. The findings support that risk perception has multiple components, and suggest that past experience (survivor status) and gender (female) affect the perception of risk. Exploration of potential contributions of other demographic factors such as age, education, and marital status to personal impact, especially for females and survivors, is discussed. Future research on and intervention program with regard to risk perception are suggested accordingly.  相似文献   

20.
The objective of this study was to link arsenic exposure and influenza A (H1N1) infection‐induced respiratory effects to assess the impact of arsenic‐contaminated drinking water on exacerbation risk of A (H1N1)‐associated lung function. The homogeneous Poisson process was used to approximate the related processes between arsenic exposure and influenza‐associated lung function exacerbation risk. We found that (i) estimated arsenic‐induced forced expiratory volume in 1 second (FEV1) reducing rates ranged from 0.116 to 0.179 mL/μg for age 15–85 years, (ii) estimated arsenic‐induced A (H1N1) viral load increasing rate was 0.5 mL/μg, (iii) estimated A (H1N1) virus‐induced FEV1 reducing rate was 0.10 mL/logTCID50, and (iv) the relationship between arsenic exposure and A (H1N1)‐associated respiratory symptoms scores (RSS) can be described by a Hill model. Here we showed that maximum RSS at day 2 postinfection for Taiwan, West Bengal (India), and the United States were estimated to be in the severe range of 0.83, 0.89, and 0.81, respectively, indicating that chronic arsenic exposure and A (H1N1) infection together are most likely to pose potential exacerbations risk of lung function, although a 50% probability of lung function exacerbations risk induced by arsenic and influenza infection was within the mild and moderate ranges of RSS at day 1 and 2 postinfection. We concluded that avoidance of drinking arsenic‐containing water could significantly reduce influenza respiratory illness and that need will become increasingly urgent as the novel H1N1 pandemic influenza virus infects people worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号