共查询到20条相似文献,搜索用时 10 毫秒
1.
In this article, a semiparametric time‐varying nonlinear vector autoregressive (NVAR) model is proposed to model nonlinear vector time series data. We consider a combination of parametric and nonparametric estimation approaches to estimate the NVAR function for both independent and dependent errors. We use the multivariate Taylor series expansion of the link function up to the second order which has a parametric framework as a representation of the nonlinear vector regression function. After the unknown parameters are estimated by the maximum likelihood estimation procedure, the obtained NVAR function is adjusted by a nonparametric diagonal matrix, where the proposed adjusted matrix is estimated by the nonparametric kernel estimator. The asymptotic consistency properties of the proposed estimators are established. Simulation studies are conducted to evaluate the performance of the proposed semiparametric method. A real data example on short‐run interest rates and long‐run interest rates of United States Treasury securities is analyzed to demonstrate the application of the proposed approach. The Canadian Journal of Statistics 47: 668–687; 2019 © 2019 Statistical Society of Canada 相似文献
2.
Failure time data occur in many areas and in various censoring forms and many models have been proposed for their regression analysis such as the proportional hazards model and the proportional odds model. Another choice that has been discussed in the literature is a general class of semiparmetric transformation models, which include the two models above and many others as special cases. In this paper, we consider this class of models when one faces a general type of censored data, case K informatively interval-censored data, for which there does not seem to exist an established inference procedure. For the problem, we present a two-step estimation procedure that is quite flexible and can be easily implemented, and the consistency and asymptotic normality of the proposed estimators of regression parameters are established. In addition, an extensive simulation study is conducted and suggests that the proposed procedure works well for practical situations. An application is also provided. 相似文献
3.
Many methods have been developed in the literature for regression analysis of current status data with noninformative censoring and also some approaches have been proposed for semiparametric regression analysis of current status data with informative censoring. However, the existing approaches for the latter situation are mainly on specific models such as the proportional hazards model and the additive hazard model. Corresponding to this, in this paper, we consider a general class of semiparametric linear transformation models and develop a sieve maximum likelihood estimation approach for the inference. In the method, the copula model is employed to describe the informative censoring or relationship between the failure time of interest and the censoring time, and Bernstein polynomials are used to approximate the nonparametric functions involved. The asymptotic consistency and normality of the proposed estimators are established, and an extensive simulation study is conducted and indicates that the proposed approach works well for practical situations. In addition, an illustrative example is provided. 相似文献
4.
5.
Fangrong Yan Huihong Zhu Junlin Liu Liyun Jiang Xuelin Huang 《Pharmaceutical statistics》2018,17(5):458-476
A bioequivalence test is to compare bioavailability parameters, such as the maximum observed concentration (Cmax) or the area under the concentration‐time curve, for a test drug and a reference drug. During the planning of a bioequivalence test, it requires an assumption about the variance of Cmax or area under the concentration‐time curve for the estimation of sample size. Since the variance is unknown, current 2‐stage designs use variance estimated from stage 1 data to determine the sample size for stage 2. However, the estimation of variance with the stage 1 data is unstable and may result in too large or too small sample size for stage 2. This problem is magnified in bioequivalence tests with a serial sampling schedule, by which only one sample is collected from each individual and thus the correct assumption of variance becomes even more difficult. To solve this problem, we propose 3‐stage designs. Our designs increase sample sizes over stages gradually, so that extremely large sample sizes will not happen. With one more stage of data, the power is increased. Moreover, the variance estimated using data from both stages 1 and 2 is more stable than that using data from stage 1 only in a 2‐stage design. These features of the proposed designs are demonstrated by simulations. Testing significance levels are adjusted to control the overall type I errors at the same level for all the multistage designs. 相似文献
6.
We consider a regression analysis of longitudinal data in the presence of outcome‐dependent observation times and informative censoring. Existing approaches commonly require a correct specification of the joint distribution of longitudinal measurements, the observation time process, and informative censoring time under the joint modeling framework and can be computationally cumbersome due to the complex form of the likelihood function. In view of these issues, we propose a semiparametric joint regression model and construct a composite likelihood function based on a conditional order statistics argument. As a major feature of our proposed methods, the aforementioned joint distribution is not required to be specified, and the random effect in the proposed joint model is treated as a nuisance parameter. Consequently, the derived composite likelihood bypasses the need to integrate over the random effect and offers the advantage of easy computation. We show that the resulting estimators are consistent and asymptotically normal. We use simulation studies to evaluate the finite‐sample performance of the proposed method and apply it to a study of weight loss data that motivated our investigation. 相似文献
7.
Zhigang Zhang Liuquan Sun Xingqiu Zhao Jianguo Sun 《Revue canadienne de statistique》2005,33(1):61-70
The authors consider the estimation of regression parameters in the context of a class of generalized proportional hazards models, termed linear transformation models, in the presence of interval‐censored data. They present an estimating equation approach whose good performance is demonstrated through simulations and which they illustrate in a few concrete cases. 相似文献
8.
Masaki Narukawa 《Journal of nonparametric statistics》2016,28(2):272-295
This paper considers a semiparametric estimation of the memory parameter in a cyclical long-memory time series, which exhibits a strong dependence on cyclical behaviour, using the Whittle likelihood based on generalised exponential (GEXP) models. The proposed estimation is included in the so-called broadband or global method and uses information from the spectral density at all frequencies. We establish the consistency and the asymptotic normality of the estimated memory parameter for a linear process and thus do not require Gaussianity. A simulation study conducted using Monte Carlo experiments shows that the proposed estimation works well compared to other existing semiparametric estimations. Moreover, we provide an empirical application of the proposed estimation, applying it to the growth rate of Japan's industrial production index and detecting its cyclical persistence. 相似文献
9.
《Journal of Statistical Computation and Simulation》2012,82(8):1654-1669
In this paper, we focus on the variable selection for the semiparametric regression model with longitudinal data when some covariates are measured with errors. A new bias-corrected variable selection procedure is proposed based on the combination of the quadratic inference functions and shrinkage estimations. With appropriate selection of the tuning parameters, we establish the consistency and asymptotic normality of the resulting estimators. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedure. We further illustrate the proposed procedure with an application. 相似文献
10.
《统计学通讯:理论与方法》2012,41(1):189-202
AbstractFailure time data occur in many areas and also in various forms and in particular, many authors have discussed regression analysis of failure time data in the presence of interval censoring, a cured subgroup or mismeasured covariates. However, it does not seem to exist an established procedure that can deal with all three issues together. Corresponding to this, we propose a sieve maximum likelihood estimation procedure that takes into account all three issues with the use of the SIMEX algorithm. The asymptotic properties of the proposed estimators are established, and an extensive simulation study is also conducted and suggests that the proposed method works well for practical situations. 相似文献
11.
12.
Takumi Saegusa 《Scandinavian Journal of Statistics》2015,42(4):1078-1091
We consider the variance estimation of the weighted likelihood estimator (WLE) under two‐phase stratified sampling without replacement. Asymptotic variance of the WLE in many semiparametric models contains unknown functions or does not have a closed form. The standard method of the inverse probability weighted (IPW) sample variances of an estimated influence function is then not available in these models. To address this issue, we develop the variance estimation procedure for the WLE in a general semiparametric model. The phase I variance is estimated by taking a numerical derivative of the IPW log likelihood. The phase II variance is estimated based on the bootstrap for a stratified sample in a finite population. Despite a theoretical difficulty of dependent observations due to sampling without replacement, we establish the (bootstrap) consistency of our estimators. Finite sample properties of our method are illustrated in a simulation study. 相似文献
13.
Jieli Ding Yanyan Liu David B. Peden Steven R. Kleeberger Haibo Zhou 《Revue canadienne de statistique》2012,40(2):282-303
In this paper, we consider a regression analysis for a missing data problem in which the variables of primary interest are unobserved under a general biased sampling scheme, an outcome‐dependent sampling (ODS) design. We propose a semiparametric empirical likelihood method for accessing the association between a continuous outcome response and unobservable interesting factors. Simulation study results show that ODS design can produce more efficient estimators than the simple random design of the same sample size. We demonstrate the proposed approach with a data set from an environmental study for the genetic effects on human lung function in COPD smokers. The Canadian Journal of Statistics 40: 282–303; 2012 © 2012 Statistical Society of Canada 相似文献
14.
This paper considers the statistical analysis of masked data in a series system with Burr-XII distributed components. Based on progressively Type-I interval censored sample, the maximum likelihood estimators for the parameters are obtained by using the expectation maximization algorithm, and the associated approximate confidence intervals are also derived. In addition, Gibbs sampling procedure using important sampling is applied for obtaining the Bayesian estimates of the parameters, and Monte Carlo method is employed to construct the credible intervals. Finally, a simulation study is proposed to illustrate the efficiency of the methods under different removal schemes and masking probabilities. 相似文献
15.
Stefan Fremdt 《Statistics》2015,49(1):128-155
In a variety of different settings cumulative sum (CUSUM) procedures have been applied for the sequential detection of structural breaks in the parameters of stochastic models. Yet their performance depends strongly on the time of change and is best under early change scenarios. For later changes their finite sample behavior is rather questionable. We therefore propose modified CUSUM procedures for the detection of abrupt changes in the regression parameter of multiple time series regression models, that show a higher stability with respect to the time of change than ordinary CUSUM procedures. The asymptotic distributions of the test statistics and the consistency of the procedures are provided. In a simulation study it is shown that the proposed procedures behave well in finite samples. Finally the procedures are applied to a set of capital asset pricing data related to the Fama–French extension of the CAPM. 相似文献
16.
Abstract. We propose a spline‐based semiparametric maximum likelihood approach to analysing the Cox model with interval‐censored data. With this approach, the baseline cumulative hazard function is approximated by a monotone B‐spline function. We extend the generalized Rosen algorithm to compute the maximum likelihood estimate. We show that the estimator of the regression parameter is asymptotically normal and semiparametrically efficient, although the estimator of the baseline cumulative hazard function converges at a rate slower than root‐n. We also develop an easy‐to‐implement method for consistently estimating the standard error of the estimated regression parameter, which facilitates the proposed inference procedure for the Cox model with interval‐censored data. The proposed method is evaluated by simulation studies regarding its finite sample performance and is illustrated using data from a breast cosmesis study. 相似文献
17.
The authors consider a semiparametric partially linear regression model with serially correlated errors. They propose a new way of estimating the error structure which has the advantage that it does not involve any nonparametric estimation. This allows them to develop an inference procedure consisting of a bandwidth selection method, an efficient semiparametric generalized least squares estimator of the parametric component, a goodness‐of‐fit test based on the bootstrap, and a technique for selecting significant covariates in the parametric component. They assess their approach through simulation studies and illustrate it with a concrete application. 相似文献
18.
The Cox‐Aalen model, obtained by replacing the baseline hazard function in the well‐known Cox model with a covariate‐dependent Aalen model, allows for both fixed and dynamic covariate effects. In this paper, we examine maximum likelihood estimation for a Cox‐Aalen model based on interval‐censored failure times with fixed covariates. The resulting estimator globally converges to the truth slower than the parametric rate, but its finite‐dimensional component is asymptotically efficient. Numerical studies show that estimation via a constrained Newton method performs well in terms of both finite sample properties and processing time for moderate‐to‐large samples with few covariates. We conclude with an application of the proposed methods to assess risk factors for disease progression in psoriatic arthritis. 相似文献
19.
《Journal of Statistical Computation and Simulation》2012,82(6):1183-1202
Quantile regression (QR) models have received increasing attention recently for longitudinal data analysis. When continuous responses appear non-centrality due to outliers and/or heavy-tails, commonly used mean regression models may fail to produce efficient estimators, whereas QR models may perform satisfactorily. In addition, longitudinal outcomes are often measured with non-normality, substantial errors and non-ignorable missing values. When carrying out statistical inference in such data setting, it is important to account for the simultaneous treatment of these data features; otherwise, erroneous or even misleading results may be produced. In the literature, there has been considerable interest in accommodating either one or some of these data features. However, there is relatively little work concerning all of them simultaneously. There is a need to fill up this gap as longitudinal data do often have these characteristics. Inferential procedure can be complicated dramatically when these data features arise in longitudinal response and covariate outcomes. In this article, our objective is to develop QR-based Bayesian semiparametric mixed-effects models to address the simultaneous impact of these multiple data features. The proposed models and method are applied to analyse a longitudinal data set arising from an AIDS clinical study. Simulation studies are conducted to assess the performance of the proposed method under various scenarios. 相似文献