首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

In this article, we propose a more general criterion called Sp -criterion, for subset selection in the multiple linear regression Model. Many subset selection methods are based on the Least Squares (LS) estimator of β, but whenever the data contain an influential observation or the distribution of the error variable deviates from normality, the LS estimator performs ‘poorly’ and hence a method based on this estimator (for example, Mallows’ Cp -criterion) tends to select a ‘wrong’ subset. The proposed method overcomes this drawback and its main feature is that it can be used with any type of estimator (either the LS estimator or any robust estimator) of β without any need for modification of the proposed criterion. Moreover, this technique is operationally simple to implement as compared to other existing criteria. The method is illustrated with examples.  相似文献   

2.
In this article, we propose a method of averaging generalized least squares estimators for linear regression models with heteroskedastic errors. The averaging weights are chosen to minimize Mallows’ Cp-like criterion. We show that the weight vector selected by our method is optimal. It is also shown that this optimality holds even when the variances of the error terms are estimated and the feasible generalized least squares estimators are averaged. The variances can be estimated parametrically or nonparametrically. Monte Carlo simulation results are encouraging. An empirical example illustrates that the proposed method is useful for predicting a measure of firms’ performance.  相似文献   

3.
Abstract

This paper is concerned with model averaging procedure for varying-coefficient partially linear models. We proposed a jackknife model averaging method that involves minimizing a leave-one-out cross-validation criterion, and developed a computational shortcut to optimize the cross-validation criterion for weight choice. The resulting model average estimator is shown to be asymptotically optimal in terms of achieving the smallest possible squared error. The simulation studies have provided evidence of the superiority of the proposed procedures. Our approach is further applied to a real data.  相似文献   

4.
《统计学通讯:理论与方法》2012,41(13-14):2465-2489
The Akaike information criterion, AIC, and Mallows’ C p statistic have been proposed for selecting a smaller number of regressors in the multivariate regression models with fully unknown covariance matrix. All of these criteria are, however, based on the implicit assumption that the sample size is substantially larger than the dimension of the covariance matrix. To obtain a stable estimator of the covariance matrix, it is required that the dimension of the covariance matrix is much smaller than the sample size. When the dimension is close to the sample size, it is necessary to use ridge-type estimators for the covariance matrix. In this article, we use a ridge-type estimators for the covariance matrix and obtain the modified AIC and modified C p statistic under the asymptotic theory that both the sample size and the dimension go to infinity. It is numerically shown that these modified procedures perform very well in the sense of selecting the true model in large dimensional cases.  相似文献   

5.
This paper presents an extension of mean-squared forecast error (MSFE) model averaging for integrating linear regression models computed on data frames of various lengths. Proposed method is considered to be a preferable alternative to best model selection by various efficiency criteria such as Bayesian information criterion (BIC), Akaike information criterion (AIC), F-statistics and mean-squared error (MSE) as well as to Bayesian model averaging (BMA) and naïve simple forecast average. The method is developed to deal with possibly non-nested models having different number of observations and selects forecast weights by minimizing the unbiased estimator of MSFE. Proposed method also yields forecast confidence intervals with a given significance level what is not possible when applying other model averaging methods. In addition, out-of-sample simulation and empirical testing proves efficiency of such kind of averaging when forecasting economic processes.  相似文献   

6.
When one or few observations are deleted in the multiple linear regression model, they can affect the variable selection. In this paper we derived the formula for the Mallows Cp criterion when k observations are deleted and express it as a functionn of basic building blocks such as residuals and leverages. Also, two real date sets are used to see how the selected model changes as few observations re deleted.  相似文献   

7.
Among criteria for the least squares estimator in a linear model (y, , V) to be simultaneously the best linear unbiased estimator, one convenient for applications is that of Anderson (1971, 1972). His result, however, has been developed under assumptions of full column rank for X and nonsingularity for V. Subsequently, this result has been extended by Styan (1973) to the case when the restriction on X is removed. In this note, it is shown that also the restriction on V can be relaxed and, consequently, that Anderson's criterion is applicable to the general linear model without any rank assumptions at all.  相似文献   

8.
Rong Zhu  Xinyu Zhang 《Statistics》2018,52(1):205-227
The theories and applications of model averaging have been developed comprehensively in the past two decades. In this paper, we consider model averaging for multivariate multiple regression models. In order to make use of the correlation information of the dependent variables sufficiently, we propose a model averaging method based on Mahalanobis distance which is related to the correlation of the dependent variables. We prove the asymptotic optimality of the resulting Mahalanobis Mallows model averaging (MMMA) estimators under certain assumptions. In the simulation study, we show that the proposed MMMA estimators compare favourably with model averaging estimators based on AIC and BIC weights and the Mallows model averaging estimators from the single dependent variable regression models. We further apply our method to the real data on urbanization rate and the proportion of non-agricultural population in ethnic minority areas of China.  相似文献   

9.
For the general linear regression model Y = Xη + e, we construct small-sample exponentially tilted empirical confidence intervals for a linear parameter 6 = aTη and for nonlinear functions of η. The coverage error for the intervals is Op(1/n), as shown in Tingley and Field (1990). The technique, though sample-based, does not require bootstrap resampling. The first step is calculation of an estimate for η. We have used a Mallows estimate. The algorithm applies whenever η is estimated as the solution of a system of equations having expected value 0. We include calculations of the relative efficiency of the estimator (compared with the classical least-squares estimate). The intervals are compared with asymptotic intervals as found, for example, in Hampel et at. (1986). We demonstrate that the procedure gives sensible intervals for small samples.  相似文献   

10.
The paper introduces a new difference-based Liu estimator β?Ldiff=([Xtilde]′[Xtilde]+I)?1([Xtilde]′[ytilde]+η β?diff) of the regression parameters β in the semiparametric regression model, y=Xβ+f+?. Difference-based estimator, β?diff=([Xtilde]′[Xtilde])?1[Xtilde]′[ytilde] and difference-based Liu estimator are analysed and compared with respect to mean-squared error (mse) criterion. Finally, the performance of the new estimator is evaluated for a real data set. Monte Carlo simulation is given to show the improvement in the scalar mse of the estimator.  相似文献   

11.
The envelope method produces efficient estimation in multivariate linear regression, and is widely applied in biology, psychology, and economics. This paper estimates parameters through a model averaging methodology and promotes the predicting abilities of the envelope models. We propose a frequentist model averaging method by minimizing a cross-validation criterion. When all the candidate models are misspecified, the proposed model averaging estimator is proved to be asymptotically optimal. When correct candidate models exist, the coefficient estimator is proved to be consistent, and the sum of the weights assigned to the correct models, in probability, converges to one. Simulations and an empirical application demonstrate the effectiveness of the proposed method.  相似文献   

12.
In semiparametric regression models, we have developed a small-sample criterion, AICC, for the selection of explanatory variables in the parametric component as well as for choosing the number of spline knots to estimate the nonparametric component. In contrast to the Akaike Information Criterion (AIC), AICC provides a nearly unbiased estimator of the expectation of the Kullback–Leibler information. Monte Carlo results show that AICC outperforms AIC, Cp( Mallows, 1973), FPE (Akaike, 1970), and SIC (Schwarz, 1978) for small samples. In addition, we show that AICC, AIC, Cp, FPE, and GCV provide asymptotically efficient selections. The asymptotic optimalities of GIC (Nishii, 1984) and SIC are also obtained.  相似文献   

13.
Model selection strategies play an important, if not explicit, role in quantitative research. The inferential properties of these strategies are largely unknown, therefore, there is little basis for recommending (or avoiding) any particular set of strategies. In this paper, we evaluate several commonly used model selection procedures [Bayesian information criterion (BIC), adjusted R 2, Mallows’ C p, Akaike information criteria (AIC), AICc, and stepwise regression] using Monte-Carlo simulation of model selection when the true data generating processes (DGP) are known.

We find that the ability of these selection procedures to include important variables and exclude irrelevant variables increases with the size of the sample and decreases with the amount of noise in the model. None of the model selection procedures do well in small samples, even when the true DGP is largely deterministic; thus, data mining in small samples should be avoided entirely. Instead, the implicit uncertainty in model specification should be explicitly discussed. In large samples, BIC is better than the other procedures at correctly identifying most of the generating processes we simulated, and stepwise does almost as well. In the absence of strong theory, both BIC and stepwise appear to be reasonable model selection strategies in large samples. Under the conditions simulated, adjusted R 2, Mallows’ C p AIC, and AICc are clearly inferior and should be avoided.  相似文献   


14.
We study the focused information criterion and frequentist model averaging and their application to post‐model‐selection inference for weighted composite quantile regression (WCQR) in the context of the additive partial linear models. With the non‐parametric functions approximated by polynomial splines, we show that, under certain conditions, the asymptotic distribution of the frequentist model averaging WCQR‐estimator of a focused parameter is a non‐linear mixture of normal distributions. This asymptotic distribution is used to construct confidence intervals that achieve the nominal coverage probability. With properly chosen weights, the focused information criterion based WCQR estimators are not only robust to outliers and non‐normal residuals but also can achieve efficiency close to the maximum likelihood estimator, without assuming the true error distribution. Simulation studies and a real data analysis are used to illustrate the effectiveness of the proposed procedure.  相似文献   

15.
The demand for reliable statistics in subpopulations, when only reduced sample sizes are available, has promoted the development of small area estimation methods. In particular, an approach that is now widely used is based on the seminal work by Battese et al. [An error-components model for prediction of county crop areas using survey and satellite data, J. Am. Statist. Assoc. 83 (1988), pp. 28–36] that uses linear mixed models (MM). We investigate alternatives when a linear MM does not hold because, on one side, linearity may not be assumed and/or, on the other, normality of the random effects may not be assumed. In particular, Opsomer et al. [Nonparametric small area estimation using penalized spline regression, J. R. Statist. Soc. Ser. B 70 (2008), pp. 265–283] propose an estimator that extends the linear MM approach to the case in which a linear relationship may not be assumed using penalized splines regression. From a very different perspective, Chambers and Tzavidis [M-quantile models for small area estimation, Biometrika 93 (2006), pp. 255–268] have recently proposed an approach for small-area estimation that is based on M-quantile (MQ) regression. This allows for models robust to outliers and to distributional assumptions on the errors and the area effects. However, when the functional form of the relationship between the qth MQ and the covariates is not linear, it can lead to biased estimates of the small area parameters. Pratesi et al. [Semiparametric M-quantile regression for estimating the proportion of acidic lakes in 8-digit HUCs of the Northeastern US, Environmetrics 19(7) (2008), pp. 687–701] apply an extended version of this approach for the estimation of the small area distribution function using a non-parametric specification of the conditional MQ of the response variable given the covariates [M. Pratesi, M.G. Ranalli, and N. Salvati, Nonparametric m-quantile regression using penalized splines, J. Nonparametric Stat. 21 (2009), pp. 287–304]. We will derive the small area estimator of the mean under this model, together with its mean-squared error estimator and compare its performance to the other estimators via simulations on both real and simulated data.  相似文献   

16.
Jibo Wu  Hu Yang 《Statistics》2013,47(3):535-545
This paper deals with parameter estimation in the linear regression model and an almost unbiased two-parameter estimator is introduced. The performance of this new estimator over the ordinary least-squares estimator and the two-parameter estimator [M.R. Özkale and S. Kaçiranlar, The restricted and unrestricted two-parameter estimator, Comm. Statist. Theory Methods 36 (2007), pp. 2707–2725] in terms of scalar mean-squared error criterion is investigated and a simulation study is done.  相似文献   

17.
In this paper, a generalized difference-based estimator is introduced for the vector parameter β in partially linear model when the errors are correlated. A generalized-difference-based almost unbiased two-parameter estimator is defined for the vector parameter β. Under the linear stochastic constraint r = Rβ + e, we introduce a new generalized-difference-based weighted mixed almost unbiased two-parameter estimator. The performance of this new estimator over the generalized-difference-based estimator and generalized- difference-based almost unbiased two-parameter estimator in terms of the MSEM criterion is investigated. The efficiency properties of the new estimator is illustrated by a simulation study. Finally, the performance of the new estimator is evaluated for a real dataset.  相似文献   

18.
This article discusses the minimax estimator in partial linear model y = Zβ + f + ε under ellipsoidal restrictions on the parameter space and quadratic loss function. The superiority of the minimax estimator over the two-step estimator is studied in the mean squared error matrix criterion.  相似文献   

19.
The maximum likelihood (ML) method is used to estimate the unknown Gamma regression (GR) coefficients. In the presence of multicollinearity, the variance of the ML method becomes overstated and the inference based on the ML method may not be trustworthy. To combat multicollinearity, the Liu estimator has been used. In this estimator, estimation of the Liu parameter d is an important problem. A few estimation methods are available in the literature for estimating such a parameter. This study has considered some of these methods and also proposed some new methods for estimation of the d. The Monte Carlo simulation study has been conducted to assess the performance of the proposed methods where the mean squared error (MSE) is considered as a performance criterion. Based on the Monte Carlo simulation and application results, it is shown that the Liu estimator is always superior to the ML and recommendation about which best Liu parameter should be used in the Liu estimator for the GR model is given.  相似文献   

20.
The least squares estimator is usually applied when estimating the parameters in linear regression models. As this estimator is sensitive to departures from normality in the residual distribution, several alternatives have been proposed. The Lp norm estimators is one class of such alternatives. It has been proposed that the kurtosis of the residual distribution be taken into account when a choice of estimator in the Lp norm class is made (i.e. the choice of p). In this paper, the asymtotic variance of the estimators is used as the criterion in the choice of p. It is shown that when this criterion is applied, other characteristics of the residual distribution than the kurtosis (namely moments of order p-2 and 2p-2) are important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号