首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The idea of dimension reduction without loss of information can be quite helpful for guiding the construction of summary plots in regression without requiring a prespecified model. Central subspaces are designed to capture all the information for the regression and to provide a population structure for dimension reduction. Here, we introduce the central k th-moment subspace to capture information from the mean, variance and so on up to the k th conditional moment of the regression. New methods are studied for estimating these subspaces. Connections with sliced inverse regression are established, and examples illustrating the theory are presented.  相似文献   

2.
Clustering in high-dimensional spaces is nowadays a recurrent problem in many scientific domains but remains a difficult task from both the clustering accuracy and the result understanding points of view. This paper presents a discriminative latent mixture (DLM) model which fits the data in a latent orthonormal discriminative subspace with an intrinsic dimension lower than the dimension of the original space. By constraining model parameters within and between groups, a family of 12 parsimonious DLM models is exhibited which allows to fit onto various situations. An estimation algorithm, called the Fisher-EM algorithm, is also proposed for estimating both the mixture parameters and the discriminative subspace. Experiments on simulated and real datasets highlight the good performance of the proposed approach as compared to existing clustering methods while providing a useful representation of the clustered data. The method is as well applied to the clustering of mass spectrometry data.  相似文献   

3.
The existence of a dimension reduction (DR) subspace is a common assumption in regression analysis when dealing with high-dimensional predictors. The estimation of such a DR subspace has received considerable attention in the past few years, the most popular method being undoubtedly the sliced inverse regression. In this paper, we propose a new estimation procedure of the DR subspace by assuming that the joint distribution of the predictor and the response variables is a finite mixture of distributions. The new method is compared through a simulation study to some classical methods.  相似文献   

4.
The most common techniques for graphically presenting a multivariate dataset involve projection onto a one or two-dimensional subspace. Interpretation of such plots is not always straightforward because projections are smoothing operations in that structure can be obscured by projection but never enhanced. In this paper an alternative procedure for finding interesting features is proposed that is based on locating the modes of an induced hyperspherical density function, and a simple algorithm for this purpose is developed. Emphasis is placed on identifying the non-linear effects, such as clustering, so to this end the data are firstly sphered to remove all of the location, scale and correlational structure. A set of simulated bivariate data and artistic qualities of painters data are used as examples.  相似文献   

5.
Sliced regression is an effective dimension reduction method by replacing the original high-dimensional predictors with its appropriate low-dimensional projection. It is free from any probabilistic assumption and can exhaustively estimate the central subspace. In this article, we propose to incorporate shrinkage estimation into sliced regression so that variable selection can be achieved simultaneously with dimension reduction. The new method can improve the estimation accuracy and achieve better interpretability for the reduced variables. The efficacy of proposed method is shown through both simulation and real data analysis.  相似文献   

6.
Reduced k‐means clustering is a method for clustering objects in a low‐dimensional subspace. The advantage of this method is that both clustering of objects and low‐dimensional subspace reflecting the cluster structure are simultaneously obtained. In this paper, the relationship between conventional k‐means clustering and reduced k‐means clustering is discussed. Conditions ensuring almost sure convergence of the estimator of reduced k‐means clustering as unboundedly increasing sample size have been presented. The results for a more general model considering conventional k‐means clustering and reduced k‐means clustering are provided in this paper. Moreover, a consistent selection of the numbers of clusters and dimensions is described.  相似文献   

7.
Time series which have more than one time dependent variable require building an appropriate model in which the variables not only have relationships with each other, but also depend on previous values in time. Based on developments for a sufficient dimension reduction, we investigate a new class of multiple time series models without parametric assumptions. First, for the dependent and independent time series, we simply use a univariate time series central subspace to estimate the autoregressive lags of the series. Secondly, we extract the successive directions to estimate the time series central subspace for regressors which include past lags of dependent and independent series in a mutual information multiple-index time series. Lastly, we estimate a multiple time series model for the reduced directions. In this article, we propose a unified estimation method of minimal dimension using an Akaike information criterion, for situations in which the dimension for multiple regressors is unknown. We present an analysis using real data from the housing price index showing that our approach is an alternative for multiple time series modeling. In addition, we check the accuracy for the multiple time series central subspace method using three simulated data sets.  相似文献   

8.
We propose a new method for dimension reduction in regression using the first two inverse moments. We develop corresponding weighted chi-squared tests for the dimension of the regression. The proposed method considers linear combinations of sliced inverse regression (SIR) and the method using a new candidate matrix which is designed to recover the entire inverse second moment subspace. The optimal combination may be selected based on the p-values derived from the dimension tests. Theoretically, the proposed method, as well as sliced average variance estimate (SAVE), is more capable of recovering the complete central dimension reduction subspace than SIR and principle Hessian directions (pHd). Therefore it can substitute for SIR, pHd, SAVE, or any linear combination of them at a theoretical level. Simulation study indicates that the proposed method may have consistently greater power than SIR, pHd, and SAVE.  相似文献   

9.
The dimension reduction in regression is an efficient method of overcoming the curse of dimensionality in non-parametric regression. Motivated by recent developments for dimension reduction in time series, an empirical extension of central mean subspace in time series to a single-input transfer function model is performed in this paper. Here, we use central mean subspace as a tool of dimension reduction for bivariate time series in the case when the dimension and lag are known and estimate the central mean subspace through the Nadaraya–Watson kernel smoother. Furthermore, we develop a data-dependent approach based on a modified Schwarz Bayesian criterion to estimate the unknown dimension and lag. Finally, we show that the approach in bivariate time series works well using an expository demonstration, two simulations, and a real data analysis such as El Niño and fish Population.  相似文献   

10.
Model-based clustering methods for continuous data are well established and commonly used in a wide range of applications. However, model-based clustering methods for categorical data are less standard. Latent class analysis is a commonly used method for model-based clustering of binary data and/or categorical data, but due to an assumed local independence structure there may not be a correspondence between the estimated latent classes and groups in the population of interest. The mixture of latent trait analyzers model extends latent class analysis by assuming a model for the categorical response variables that depends on both a categorical latent class and a continuous latent trait variable; the discrete latent class accommodates group structure and the continuous latent trait accommodates dependence within these groups. Fitting the mixture of latent trait analyzers model is potentially difficult because the likelihood function involves an integral that cannot be evaluated analytically. We develop a variational approach for fitting the mixture of latent trait models and this provides an efficient model fitting strategy. The mixture of latent trait analyzers model is demonstrated on the analysis of data from the National Long Term Care Survey (NLTCS) and voting in the U.S. Congress. The model is shown to yield intuitive clustering results and it gives a much better fit than either latent class analysis or latent trait analysis alone.  相似文献   

11.
Model-based clustering is a method that clusters data with an assumption of a statistical model structure. In this paper, we propose a novel model-based hierarchical clustering method for a finite statistical mixture model based on the Fisher distribution. The main foci of the proposed method are: (a) provide efficient solution to estimate the parameters of a Fisher mixture model (FMM); (b) generate a hierarchy of FMMs and (c) select the optimal model. To this aim, we develop a Bregman soft clustering method for FMM. Our model estimation strategy exploits Bregman divergence and hierarchical agglomerative clustering. Whereas, our model selection strategy comprises a parsimony-based approach and an evaluation graph-based approach. We empirically validate our proposed method by applying it on simulated data. Next, we apply the method on real data to perform depth image analysis. We demonstrate that the proposed clustering method can be used as a potential tool for unsupervised depth image analysis.  相似文献   

12.
13.
In this paper, we consider the ultrahigh-dimensional sufficient dimension reduction (SDR) for censored data and measurement error in covariates. We first propose the feature screening procedure based on censored data and the covariates subject to measurement error. With the suitable correction of mismeasurement, the error-contaminated variables detected by the proposed feature screening procedure are the same as the truly important variables. Based on the selected active variables, we develop the SDR method to estimate the central subspace and the structural dimension with both censored data and measurement error incorporated. The theoretical results of the proposed method are established. Simulation studies are reported to assess the performance of the proposed method. The proposed method is implemented to NKI breast cancer data.  相似文献   

14.
Model-based clustering is a flexible grouping technique based on fitting finite mixture models to data groups. Despite its rapid development in recent years, there is rather limited literature devoted to developing diagnostic tools for obtained clustering solutions. In this paper, a new method through fuzzy variation decomposition is proposed for probabilistic assessing contribution of variables to a detected dataset partition. Correlation between-variable contributions reveals the underlying variable interaction structure. A visualization tool illustrates whether two variables work collaboratively or exclusively in the model. Elimination of negative-effect variables in the partition leads to better classification results. The developed technique is employed on real-life datasets with promising results.  相似文献   

15.
Projection techniques for nonlinear principal component analysis   总被引:4,自引:0,他引:4  
Principal Components Analysis (PCA) is traditionally a linear technique for projecting multidimensional data onto lower dimensional subspaces with minimal loss of variance. However, there are several applications where the data lie in a lower dimensional subspace that is not linear; in these cases linear PCA is not the optimal method to recover this subspace and thus account for the largest proportion of variance in the data.Nonlinear PCA addresses the nonlinearity problem by relaxing the linear restrictions on standard PCA. We investigate both linear and nonlinear approaches to PCA both exclusively and in combination. In particular we introduce a combination of projection pursuit and nonlinear regression for nonlinear PCA. We compare the success of PCA techniques in variance recovery by applying linear, nonlinear and hybrid methods to some simulated and real data sets.We show that the best linear projection that captures the structure in the data (in the sense that the original data can be reconstructed from the projection) is not necessarily a (linear) principal component. We also show that the ability of certain nonlinear projections to capture data structure is affected by the choice of constraint in the eigendecomposition of a nonlinear transform of the data. Similar success in recovering data structure was observed for both linear and nonlinear projections.  相似文献   

16.
In this article, we propose to use sparse sufficient dimension reduction as a novel method for Markov blanket discovery of a target variable, where we do not take any distributional assumption on the variables. By assuming sparsity on the basis of the central subspace, we developed a penalized loss function estimate on the high-dimensional covariance matrix. A coordinate descent algorithm based on an inverse regression is used to get the sparse basis of the central subspace. Finite sample behavior of the proposed method is explored by simulation study and real data examples.  相似文献   

17.
Sliced average variance estimation is one of many methods for estimating the central subspace. It was shown to be more comprehensive than sliced inverse regression in the sense that it consistently estimates the central subspace under mild conditions while slice inverse regression may estimate only a proper subset of the central subspace. In this paper we extend this method to regressions with qualitative predictors. We also provide tests of dimension and a marginal coordinate hypothesis test. We apply the method to a data set concerning lakes infested by Eurasian Watermilfoil, and compare this new method to the partial inverse regression estimator.  相似文献   

18.
Cluster analysis is an important technique of explorative data mining. It refers to a collection of statistical methods for learning the structure of data by solely exploring pairwise distances or similarities. Often meaningful structures are not detectable in these high-dimensional feature spaces. Relevant features can be obfuscated by noise from irrelevant measurements. These observations led to the design of subspace clustering algorithms, which can identify clusters that originate from different subsets of features. Hunting for clusters in arbitrary subspaces is intractable due to the infinite search space spanned by all feature combinations. In this work, we present a subspace clustering algorithm that can be applied for exhaustively screening all feature combinations of small- or medium-sized datasets (approximately 30 features). Based on a robustness analysis via subsampling we are able to identify a set of stable candidate subspace cluster solutions.  相似文献   

19.
In this article, we propose a new method for sufficient dimension reduction when both response and predictor are vectors. The new method, using distance covariance, keeps the model-free advantage, and can fully recover the central subspace even when many predictors are discrete. We then extend this method to the dual central subspace, including a special case of canonical correlation analysis. We illustrated estimators through extensive simulations and real datasets, and compared to some existing methods, showing that our estimators are competitive and robust.  相似文献   

20.
This paper presents a new Bayesian, infinite mixture model based, clustering approach, specifically designed for time-course microarray data. The problem is to group together genes which have “similar” expression profiles, given the set of noisy measurements of their expression levels over a specific time interval. In order to capture temporal variations of each curve, a non-parametric regression approach is used. Each expression profile is expanded over a set of basis functions and the sets of coefficients of each curve are subsequently modeled through a Bayesian infinite mixture of Gaussian distributions. Therefore, the task of finding clusters of genes with similar expression profiles is then reduced to the problem of grouping together genes whose coefficients are sampled from the same distribution in the mixture. Dirichlet processes prior is naturally employed in such kinds of models, since it allows one to deal automatically with the uncertainty about the number of clusters. The posterior inference is carried out by a split and merge MCMC sampling scheme which integrates out parameters of the component distributions and updates only the latent vector of the cluster membership. The final configuration is obtained via the maximum a posteriori estimator. The performance of the method is studied using synthetic and real microarray data and is compared with the performances of competitive techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号