首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we have discussed inference aspects of the skew-normal nonlinear regression models following both, a classical and Bayesian approach, extending the usual normal nonlinear regression models. The univariate skew-normal distribution that will be used in this work was introduced by Sahu et al. (Can J Stat 29:129–150, 2003), which is attractive because estimation of the skewness parameter does not present the same degree of difficulty as in the case with Azzalini (Scand J Stat 12:171–178, 1985) one and, moreover, it allows easy implementation of the EM-algorithm. As illustration of the proposed methodology, we consider a data set previously analyzed in the literature under normality.  相似文献   

2.
In the paper the problem of testing of two-sided hypotheses for variance components in mixed linear models is considered. When the uniformly most powerful invariant test does not exist (see e.g. Das and Sinha, in Proceedings of the second international Tampere conference in statistics, 1987; Gnot and Michalski, in Statistics 25:213–223, 1994; Michalski and Zmyślony, in Statistics 27:297–310, 1996) then to conduct the optimal statistical inference on model parameters a construction of a test with locally best properties is desirable, cf. Michalski (in Tatra Mountains Mathematical Publications 26:1–21, 2003). The main goal of this article is the construction of the locally best invariant unbiased test for a single variance component (or for a ratio of variance components). The result has been obtained utilizing Andersson’s and Wijsman’s approach connected with a representation of density function of maximal invariant (Andersson, in Ann Stat 10:955–961, 1982; Wijsman, in Proceedings of fifth Berk Symp Math Statist Prob 1:389–400, 1967; Wijsman, in Sankhyā A 48:1–42, 1986; Khuri et al., in Statistical tests for mixed linear models, 1998) and from generalized Neyman–Pearson Lemma (Dantzig and Wald, in Ann Math Stat 22:87–93, 1951; Rao, in Linear statistical inference and its applications, 1973). One selected real example of an unbalanced mixed linear model is given, for which the power functions of the LBIU test and Wald’s test (the F-test in ANOVA model) are computed, and compared with the attainable upper bound of power obtained by using Neyman–Pearson Lemma.  相似文献   

3.
The last decade saw enormous progress in the development of causal inference tools to account for noncompliance in randomized clinical trials. With survival outcomes, structural accelerated failure time (SAFT) models enable causal estimation of effects of observed treatments without making direct assumptions on the compliance selection mechanism. The traditional proportional hazards model has however rarely been used for causal inference. The estimator proposed by Loeys and Goetghebeur (2003, Biometrics vol. 59 pp. 100–105) is limited to the setting of all or nothing exposure. In this paper, we propose an estimation procedure for more general causal proportional hazards models linking the distribution of potential treatment-free survival times to the distribution of observed survival times via observed (time-constant) exposures. Specifically, we first build models for observed exposure-specific survival times. Next, using the proposed causal proportional hazards model, the exposure-specific survival distributions are backtransformed to their treatment-free counterparts, to obtain – after proper mixing – the unconditional treatment-free survival distribution. Estimation of the parameter(s) in the causal model is then based on minimizing a test statistic for equality in backtransformed survival distributions between randomized arms.  相似文献   

4.
In this paper, we consider a constructive representation of skewed distributions, which proposed by Ferreira and Steel (J Am Stat Assoc 101:823–829, 2006), and its basic properties is presented. We study the five versions of skew- normal distributions in this general setting. An appropriate empirical model for a skewed distribution is introduced. In data analysis, we compare this empirical model with the other four versions of skew-normal distributions, via some reasonable criteria. It is shown that the proposed empirical model has a better fit for density estimation.  相似文献   

5.
The second-order least-squares estimator (SLSE) was proposed by Wang (Statistica Sinica 13:1201–1210, 2003) for measurement error models. It was extended and applied to linear and nonlinear regression models by Abarin and Wang (Far East J Theor Stat 20:179–196, 2006) and Wang and Leblanc (Ann Inst Stat Math 60:883–900, 2008). The SLSE is asymptotically more efficient than the ordinary least-squares estimator if the error distribution has a nonzero third moment. However, it lacks robustness against outliers in the data. In this paper, we propose a robust second-order least squares estimator (RSLSE) against X-outliers. The RSLSE is highly efficient with high breakdown point and is asymptotically normally distributed. We compare the RSLSE with other estimators through a simulation study. Our results show that the RSLSE performs very well.  相似文献   

6.
In estimating the proportion of people bearing a sensitive attribute A, say, in a given community, following Warner’s (J Am Stat Assoc 60:63–69, 1965) pioneering work, certain randomized response (RR) techniques are available for application. These are intended to ensure efficient and unbiased estimation protecting a respondent’s privacy when it touches a person’s socially stigmatizing feature like rash driving, tax evasion, induced abortion, testing HIV positive, etc. Lanke (Int Stat Rev 44:197–203, 1976), Leysieffer and Warner (J Am Stat Assoc 71:649–656, 1976), Anderson (Int Stat Rev 44:213–217, 1976, Scand J Stat 4:11–19, 1977) and Nayak (Commun Stat Theor Method 23:3303–3321, 1994) among others have discussed how maintenance of efficiency is in conflict with protection of privacy. In their RR-related activities the sample selection is traditionally by simple random sampling (SRS) with replacement (WR). In this paper, an extension of an essential similarity in case of general unequal probability sample selection even without replacement is reported. Large scale surveys overwhelmingly employ complex designs other than SRSWR. So extension of RR techniques to complex designs is essential and hence this paper principally refers to them. New jeopardy measures to protect revelation of secrecy presented here are needed as modifications of those in the literature covering SRSWR alone. Observing that multiple responses are feasible in addressing such a dichotomous situation especially with Kuk’s (Biometrika 77:436–438, 1990) and Christofides’ (Metrika 57:195–200, 2003) RR devices, an average of the response-specific jeopardizing measures is proposed. This measure which is device dependent, could be regarded as a technical characteristic of the device and it should be made known to the participants before they agree to use the randomization device. The views expressed are the authors’, not of the organizations they work for. Prof Chaudhuri’s research is partially supported by CSIR Grant No. 21(0539)/02/EMR-II.  相似文献   

7.
The sampling designs dependent on sample moments of auxiliary variables are well known. Lahiri (Bull Int Stat Inst 33:133–140, 1951) considered a sampling design proportionate to a sample mean of an auxiliary variable. Sing and Srivastava (Biometrika 67(1):205–209, 1980) proposed the sampling design proportionate to a sample variance while Wywiał (J Indian Stat Assoc 37:73–87, 1999) a sampling design proportionate to a sample generalized variance of auxiliary variables. Some other sampling designs dependent on moments of an auxiliary variable were considered e.g. in Wywiał (Some contributions to multivariate methods in, survey sampling. Katowice University of Economics, Katowice, 2003a); Stat Transit 4(5):779–798, 2000) where accuracy of some sampling strategies were compared, too.These sampling designs cannot be useful in the case when there are some censored observations of the auxiliary variable. Moreover, they can be much too sensitive to outliers observations. In these cases the sampling design proportionate to the order statistic of an auxiliary variable can be more useful. That is why such an unequal probability sampling design is proposed here. Its particular cases as well as its conditional version are considered, too. The sampling scheme implementing this sampling design is proposed. The inclusion probabilities of the first and second orders were evaluated. The well known Horvitz–Thompson estimator is taken into account. A ratio estimator dependent on an order statistic is constructed. It is similar to the well known ratio estimator based on the population and sample means. Moreover, it is an unbiased estimator of the population mean when the sample is drawn according to the proposed sampling design dependent on the appropriate order statistic.  相似文献   

8.
We develop a Bayesian analysis for the class of Birnbaum–Saunders nonlinear regression models introduced by Lemonte and Cordeiro (Comput Stat Data Anal 53:4441–4452, 2009). This regression model, which is based on the Birnbaum–Saunders distribution (Birnbaum and Saunders in J Appl Probab 6:319–327, 1969a), has been used successfully to model fatigue failure times. We have considered a Bayesian analysis under a normal-gamma prior. Due to the complexity of the model, Markov chain Monte Carlo methods are used to develop a Bayesian procedure for the considered model. We describe tools for model determination, which include the conditional predictive ordinate, the logarithm of the pseudo-marginal likelihood and the pseudo-Bayes factor. Additionally, case deletion influence diagnostics is developed for the joint posterior distribution based on the Kullback–Leibler divergence. Two empirical applications are considered in order to illustrate the developed procedures.  相似文献   

9.
The multivariate skew-t distribution (J Multivar Anal 79:93–113, 2001; J R Stat Soc, Ser B 65:367–389, 2003; Statistics 37:359–363, 2003) includes the Student t, skew-Cauchy and Cauchy distributions as special cases and the normal and skew–normal ones as limiting cases. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis of repeated measures, pretest/post-test data, under multivariate null intercept measurement error model (J Biopharm Stat 13(4):763–771, 2003) where the random errors and the unobserved value of the covariate (latent variable) follows a Student t and skew-t distribution, respectively. The results and methods are numerically illustrated with an example in the field of dentistry.  相似文献   

10.
Asymptotic theory for the Cox semi-Markov illness-death model   总被引:1,自引:1,他引:0  
Irreversible illness-death models are used to model disease processes and in cancer studies to model disease recovery. In most applications, a Markov model is assumed for the multistate model. When there are covariates, a Cox (1972, J Roy Stat Soc Ser B 34:187–220) model is used to model the effect of covariates on each transition intensity. Andersen et al. (2000, Stat Med 19:587–599) proposed a Cox semi-Markov model for this problem. In this paper, we study the large sample theory for that model and provide the asymptotic variances of various probabilities of interest. A Monte Carlo study is conducted to investigate the robustness and efficiency of Markov/Semi-Markov estimators. A real data example from the PROVA (1991, Hepatology 14:1016–1024) trial is used to illustrate the theory.  相似文献   

11.
Singh et al. (Stat Trans 6(4):515–522, 2003) proposed a modified unrelated question procedure and they also demonstrated that the modified procedure is capable of producing a more efficient estimator of the population parameter π A , namely, the proportion of persons in a community bearing a sensitive character A when π A  < 0.50. The development of Singh et al. (Stat Trans 6(4):515–522, 2003) is based on simple random samples with replacement and on the assumption that π B , namely, the proportion of individuals bearing an unrelated innocuous character B is known. Due to these limitations, Singh et al.’s (Stat Trans 6(4):515–522, 2003) procedure cannot be used in practical surveys where usually the sample units are chosen with varying selection probabilities. In this article, following Singh et al. (Stat Trans 6(4):515–522, 2003) we propose an alternative RR procedure assuming that the population units are sampled with unequal selection probabilities and that the value of π B is unknown. A numerical example comparing the performance of the proposed RR procedure under alternative sampling designs is also reported.  相似文献   

12.
On MSE of EBLUP   总被引:1,自引:1,他引:0  
We consider Best Linear Unbiased Predictors (BLUPs) and Empirical Best Linear Unbiased Predictors (EBLUPs) under the general mixed linear model. The BLUP was proposed by Henderson (Ann Math Stat 21:309–310, 1950). The formula of this BLUP includes unknown elements of the variance-covariance matrix of random variables. If the elements in the formula of the BLUP proposed by Henderson (Ann Math Stat 21:309–310, 1950) are replaced by some type of estimators, we obtain the two-stage predictor called the EBLUP which is model-unbiased (Kackar and Harville in Commun Stat A 10:1249–1261, 1981). Kackar and Harville (J Am Stat Assoc 79:853–862, 1984) show an approximation of the mean square error (the MSE) of the predictor and propose an estimator of the MSE. The MSE and estimators of the MSE are also studied by Prasad and Rao (J Am Stat Assoc 85:163–171, 1990), Datta and Lahiri (Stat Sin 10:613–627, 2000) and Das et al. (Ann Stat 32(2):818–840, 2004). In the paper we consider the BLUP proposed by Royall (J Am Stat Assoc 71:657–473, 1976. Ża̧dło (On unbiasedness of some EBLU predictor. Physica-Verlag, Heidelberg, pp 2019–2026, 2004) shows that the BLUP proposed by Royall (J Am Stat Assoc 71:657–473, 1976) may be treated as a generalisation of the BLUP proposed by Henderson (Ann Math Stat 21:309–310, 1950) and proves model unbiasedness of the EBLUP based on the formula of the BLUP proposed by Royall (J Am Stat Assoc 71:657–473, 1976) under some assumptions. In this paper we derive the formula of the approximate MSE of the EBLUP and its estimators. We prove that the approximation of the MSE is accurate to terms o(D −1) and that the estimator of the MSE is approximately unbiased in the sense that its bias is o(D −1) under some assumptions, where D is the number of domains. The proof is based on the results obtained by Datta and Lahiri (Stat Sin 10:613–627, 2000). Using our results we show some EBLUP based on the special case of the general linear model. We also present the formula of its MSE and estimators of its MSE and their performance in Monte Carlo simulation study.   相似文献   

13.
Censored regression quantile (CRQ) methods provide a powerful and flexible approach to the analysis of censored survival data when standard linear models are felt to be appropriate. In many cases however, greater flexibility is desired to go beyond the usual multiple regression paradigm. One area of common interest is that of partially linear models: one (or more) of the explanatory covariates are assumed to act on the response through a non-linear function. Here the CRQ approach of Portnoy (J Am Stat Assoc 98:1001–1012, 2003) is extended to this partially linear setting. Basic consistency results are presented. A simulation experiment and unemployment example justify the value of the partially linear approach over methods based on the Cox proportional hazards model and on methods not permitting nonlinearity.  相似文献   

14.
Sasabuchi et al. (Biometrika 70(2):465–472, 1983) introduces a multivariate version of the well-known univariate isotonic regression which plays a key role in the field of statistical inference under order restrictions. His proposed algorithm for computing the multivariate isotonic regression, however, is guaranteed to converge only under special conditions (Sasabuchi et al., J Stat Comput Simul 73(9):619–641, 2003). In this paper, a more general framework for multivariate isotonic regression is given and an algorithm based on Dykstra’s method is used to compute the multivariate isotonic regression. Two numerical examples are given to illustrate the algorithm and to compare the result with the one published by Fernando and Kulatunga (Comput Stat Data Anal 52:702–712, 2007).  相似文献   

15.
The cumulative incidence function provides intuitive summary information about competing risks data. Via a mixture decomposition of this function, Chang and Wang (Statist. Sinca 19:391–408, 2009) study how covariates affect the cumulative incidence probability of a particular failure type at a chosen time point. Without specifying the corresponding failure time distribution, they proposed two estimators and derived their large sample properties. The first estimator utilized the technique of weighting to adjust for the censoring bias, and can be considered as an extension of Fine’s method (J R Stat Soc Ser B 61: 817–830, 1999). The second used imputation and extends the idea of Wang (J R Stat Soc Ser B 65: 921–935, 2003) from a nonparametric setting to the current regression framework. In this article, when covariates take only discrete values, we extend both approaches of Chang and Wang (Statist Sinca 19:391–408, 2009) by allowing left truncation. Large sample properties of the proposed estimators are derived, and their finite sample performance is investigated through a simulation study. We also apply our methods to heart transplant survival data.  相似文献   

16.
This article generalizes the Monte Carlo Markov Chain (MCMC) algorithm, based on the Gibbs weighted Chinese restaurant (gWCR) process algorithm, for a class of kernel mixture of time series models over the Dirichlet process. This class of models is an extension of Lo’s (Ann. Stat. 12:351–357, 1984) kernel mixture model for independent observations. The kernel represents a known distribution of time series conditional on past time series and both present and past latent variables. The latent variables are independent samples from a Dirichlet process, which is a random discrete (almost surely) distribution. This class of models includes an infinite mixture of autoregressive processes and an infinite mixture of generalized autoregressive conditional heteroskedasticity (GARCH) processes.  相似文献   

17.
An alternative stochastic restricted Liu estimator in linear regression   总被引:2,自引:1,他引:1  
In this paper, we introduce an alternative stochastic restricted Liu estimator for the vector of parameters in a linear regression model when additional stochastic linear restrictions on the parameter vector are assumed to hold. The new estimator is a generalization of the ordinary mixed estimator (OME) (Durbin in J Am Stat Assoc 48:799–808, 1953; Theil and Goldberger in Int Econ Rev 2:65–78, 1961; Theil in J Am Stat Assoc 58:401–414, 1963) and Liu estimator proposed by Liu (Commun Stat Theory Methods 22:393–402, 1993). Necessary and sufficient conditions for the superiority of the new stochastic restricted Liu estimator over the OME, the Liu estimator and the estimator proposed by Hubert and Wijekoon (Stat Pap 47:471–479, 2006) in the mean squared error matrix (MSEM) sense are derived. Furthermore, a numerical example based on the widely analysed dataset on Portland cement (Woods et al. in Ind Eng Chem 24:1207–1241, 1932) and a Monte Carlo evaluation of the estimators are also given to illustrate some of the theoretical results.  相似文献   

18.
This note provides the asymptotic distribution of a Perron-type innovational outlier unit root test developed by Popp (J Stat Comput Sim 78:1145–1161, 2008) in case of a shift in the intercept for non-trending data. In Popp (J Stat Comput Sim 78:1145–1161, 2008), only critical values for finite samples based on Monte Carlo techniques are tabulated. Using similar arguments as in Zivot and Andrews (J Bus Econ Stat 10:251–270, 1992), weak convergence is shown for the test statistics.  相似文献   

19.
Breslow and Holubkov (J Roy Stat Soc B 59:447–461 1997a) developed semiparametric maximum likelihood estimation for two-phase studies with a case–control first phase under a logistic regression model and noted that, apart for the overall intercept term, it was the same as the semiparametric estimator for two-phase studies with a prospective first phase developed in Scott and Wild (Biometrica 84:57–71 1997). In this paper we extend the Breslow–Holubkov result to general binary regression models and show that it has a very simple relationship with its prospective first-phase counterpart. We also explore why the design of the first phase only affects the intercept of a logistic model, simplify the calculation of standard errors, establish the semiparametric efficiency of the Breslow–Holubkov estimator and derive its asymptotic distribution in the general case.  相似文献   

20.
Modelling count data with overdispersion and spatial effects   总被引:1,自引:1,他引:0  
In this paper we consider regression models for count data allowing for overdispersion in a Bayesian framework. We account for unobserved heterogeneity in the data in two ways. On the one hand, we consider more flexible models than a common Poisson model allowing for overdispersion in different ways. In particular, the negative binomial and the generalized Poisson (GP) distribution are addressed where overdispersion is modelled by an additional model parameter. Further, zero-inflated models in which overdispersion is assumed to be caused by an excessive number of zeros are discussed. On the other hand, extra spatial variability in the data is taken into account by adding correlated spatial random effects to the models. This approach allows for an underlying spatial dependency structure which is modelled using a conditional autoregressive prior based on Pettitt et al. in Stat Comput 12(4):353–367, (2002). In an application the presented models are used to analyse the number of invasive meningococcal disease cases in Germany in the year 2004. Models are compared according to the deviance information criterion (DIC) suggested by Spiegelhalter et al. in J R Stat Soc B64(4):583–640, (2002) and using proper scoring rules, see for example Gneiting and Raftery in Technical Report no. 463, University of Washington, (2004). We observe a rather high degree of overdispersion in the data which is captured best by the GP model when spatial effects are neglected. While the addition of spatial effects to the models allowing for overdispersion gives no or only little improvement, spatial Poisson models with spatially correlated or uncorrelated random effects are to be preferred over all other models according to the considered criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号