首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The largest value of the constant c for which holds over the class of random variables X with non-zero mean and finite second moment, is c=π. Let the random variable (r.v.) X with distribution function F(·) have non-zero mean and finite second moment. In studying a certain random walk problem (Daley, 1976) we sought a bound on the characteristic function of the form for some positive constant c. Of course the inequality is non-trivial only provided that . This note establishes that the best possible constant c =π. The wider relevance of the result is we believe that it underlines the use of trigonometric inequalities in bounding the (modulus of a) c.f. (see e.g. the truncation inequalities in §12.4 of Loève (1963)). In the present case the bound thus obtained is the best possible bound, and is better than the bound (2) |1-?(θ)| ≥ |θEX|-θ2EX2\2 obtained by applying the triangular inequality to the relation which follows from a two-fold integration by parts in the defining equation (*). The treatment of the counter-example furnished below may also be of interest. To prove (1) with c=π, recall that sin u > u(1-u/π) (all real u), so Since |E sinθX|-|E sin(-θX)|, the modulus sign required in (1) can be inserted into (4). Observe that since sin u > u for u < 0, it is possible to strengthen (4) to (denoting max(0,x) by x+) To show that c=π is the best possible constant in (1), assume without loss of generality that EX > 0, and take θ > 0. Then (1) is equivalent to (6) c < θEX2/{EX-|1-?(θ)|/θ} for all θ > 0 and all r.v.s. X with EX > 0 and EX2. Consider the r.v. where 0 < x < 1 and 0 < γ < ∞. Then EX=1, EX2=1+γx2, From (4) it follows that |1-?(θ)| > 0 for 0 < |θ| <π|EX|/EX2 but in fact this positivity holds for 0 < |θ| < 2π|EX|/EX2 because by trigonometry and the Cauchy-Schwartz inequality, |1-?(θ)| > |Re(1-?(θ))| = |E(1-cosθX)| = 2|E sin2θX/2| (10) >2(E sinθX/2)2 (11) >(|θEX|-θ2EX2/2π)2/2 > 0, the inequality at (11) holding provided that |θEX|-θ2EX2/2π > 0, i.e., that 0 < |θ| < 2π|EX|/EX2. The random variable X at (7) with x= 1 shows that the range of positivity of |1-?(θ)| cannot in general be extended. If X is a non-negative r.v. with finite positive mean, then the identity shows that (1-?(θ))/iθEX is the c.f. of a non-negative random variable, and hence (13) |1-?(θ)| < |θEX| (all θ). This argument fans if pr{X < 0}pr{X> 0} > 0, but as a sharper alternative to (14) |1-?(θ)| < |θE|X||, we note (cf. (2) and (3)) first that (15) |1-?(θ)| < |θEX| +θ2EX2/2. For a bound that is more precise for |θ| close to 0, |1-?(θ)|2= (Re(1-?(θ)))2+ (Im?(θ))2 <(θ2EX2/2)2+(|θEX| +θ2EX2-/π)2, so (16) |1-?(θ)| <(|θEX| +θ2EX2-/π) + |θ|3(EX2)2/8|EX|.  相似文献   

2.
Yo Sheena † 《Statistics》2013,47(5):371-379
We consider the estimation of Σ of the p-dimensional normal distribution Np (0, Σ) when Σ?=?θ0 Ip ?+?θ1 aa′, where a is an unknown p-dimensional normalized vector and θ0?>?0, θ1?≥?0 are also unknown. First, we derive the restricted maximum likelihood (REML) estimator. Second, we propose a new estimator, which dominates the REML estimator with respect to Stein's loss function. Finally, we carry out Monte Carlo simulation to investigate the magnitude of the new estimator's superiority.  相似文献   

3.
In this paper we assume that in a random sample of size ndrawn from a population having the pdf f(x; θ) the smallest r1 observations and the largest r2 observations are censored (r10, r20). We consider the problem of estimating θ on the basis of the middle n-r1-r2 observations when either f(x;θ)=θ-1f(x/θ) or f(x;θ) = (aθ)1f(x-θ)/aθ) where f(·) is a known pdf, a (<0) is known and θ (>0) is unknown. The minimum mean square error (MSE) linear estimator of θ proposed in this paper is a “shrinkage” of the minimum variance linear unbiased estimator of θ. We obtain explicit expressions of these estimators and their mean square errors when (i) f(·) is the uniform pdf defined on an interval of length one and (ii) f(·) is the standard exponential pdf, i.e., f(x) = exp(–x), x0. Various special cases of censoring from the left (right) and no censoring are considered.  相似文献   

4.
Let (θ1,x1),…,(θn,xn) be independent and identically distributed random vectors with E(xθ) = θ and Var(x|θ) = a + bθ + cθ2. Let ti be the linear Bayes estimator of θi and θ~i be the linear empirical Bayes estimator of θi as proposed in Robbins (1983). When Ex and Var x are unknown to the statistician. The regret of using θ~i instead of ti because of ignorance of the mean and the variance is ri = E(θi ? θi)2 ?E(tii)2. Under appropriate conditions cumulative regret Rn = r1+…rn is shown to have a finite limit even when n tends to infinity. The limit can be explicitly computed in terms of a,b,c and the first four moments of x.  相似文献   

5.
We consider the general one-sided hypotheses testing problem expressed as H0: θ1 ? h2) versus H1: θ1 < h2), where h( · ) is not necessary differentiable. The values of the right and the left differential coefficients, h?( · ) and h+( · ), at nondifferentiable points play an essential role in constructing the appropriate testing procedures with asymptotic size α on the basis of the likelihood ratio principle. The likelihood ratio testing procedure is related to an intersection–union testing procedure when h?2) ? h+2) for all θ2, and to a union–intersection testing procedure when there exists a θ2 such that h?2) < h+2).  相似文献   

6.
Let πi (i=1,2,…, k) be charceterized by the uniform distribution on (ai;bi), where exactly one of ai and bi is unknown. With unequal sample sizes, suppose that from the k (>=2) given populations, we wish to select a random-size subset containing the one with the smllest value of θi= bi - ai. RuleRi selects π if a likelihood-based k-dimensional confidence region for the unknown (θ1,… θk) contains at least one point having θi as its smallest component. A second rule, R , is derived through a likelihood ratio and turns out to be that of Barr and prabhu whenthe sample sizes are equal. Numerical comparisons are made. The results apply to the larger class of densities g ( z ; θi) =M(z)Q(θi) if a(θi) < z <b(θi). Extensions to the cases when both ai and bi are unknown and when θj isof interest are indicated. 1<=j<=k  相似文献   

7.
Consider K(>2) independent populations π1,..,π k such that observations obtained from π k are independent and normally distributed with unknown mean µ i and unknown variance θ i i = 1,…,k. In this paper, we provide lower percentage points of Hartley's extremal quotient statistic for testing an interval hypothesisH 0 θ [k] θ [k] > δ vs. H a : θ [k] θ [1] ≤ δ , where δ ≥ 1 is a predetermined constant and θ [k](θ [1]) is the max (min) of the θi,…,θ k . The least favorable configuration (LFC) for the test under H 0 is determined in order to obtain the lower percentage points. These percentage points can also be used to construct an upper confidence bound for θ[k][1].  相似文献   

8.
Let X have a gamma distribution with known shape parameter θr;aL and unknown scale parameter θ. Suppose it is known that θ ≥ a for some known a > 0. An admissible minimax estimator for scale-invariant squared-error loss is presented. This estimator is the pointwise limit of a sequence of Bayes estimators. Further, the class of truncated linear estimators C = {θρρ(x) = max(a, ρ), ρ > 0} is studied. It is shown that each θρ is inadmissible and that exactly one of them is minimax. Finally, it is shown that Katz's [Ann. Math. Statist., 32, 136–142 (1961)] estimator of θ is not minimax for our loss function. Some further properties of and comparisons among these estimators are also presented.  相似文献   

9.
Abstract There are given k (≥22) independent distributions with c.d.f.'s F(x;θj) indexed by a scale parameter θj, j = 1,…, k. Let θ[i] (i = 1,…, k) denote the ith smallest one of θ1,…, θk. In this paper we wish to show that, under some regularity conditions, there does not exist an exact β-level (0≤β1) confidence interval for the ith smallest scale parameter θi based on k independent samples. Since the log transformation method may not yield the desired results for the scale parameter problem, we will treat the scale parameter case directly without transformation. Application is considered for normal variances. Two conservative one-sided confidence intervals for the ith smallest normal variance and the percentage points needed to actually apply the intervals are provided.  相似文献   

10.
Let Sp × p have a Wishart distribution with parameter matrix Σ and n degrees of freedom. We consider here the problem of estimating the precision matrix Σ?1 under the loss functions L1(σ) tr (σ) - log |σ| and L2(σ) = tr (σ). James-Stein-type estimators have been derived for an arbitrary p. We also obtain an orthogonal invariant and a diagonal invariant minimax estimator under both loss functions. A Monte-Carlo simulation study indicates that the risk improvement of the orthogonal invariant estimators over the James-Stein type estimators, the Haff (1979) estimator, and the “testimator” given by Sinha and Ghosh (1987) is substantial.  相似文献   

11.
We consider the problem of robustness in hierarchical Bayes models. Let X = (X1,X2, … ,Xp)τ be a random vector, the X1 being independently distributed as N(θ12) random variables (σ2 known), while the θ1 are thought to be exchangeable, modelled as i.i.d, N(μ,τ2). The hyperparameter µ is given a noninformative prior distribution π(μ) = 1 and τ2 is assumed to be independent of µ having a distribution g(τ2) lying in a certain class of distributions g. For several g's, including e-contaminations classes and density ratio classes we determine the range of the posterior mean of θ1 as g ranges over g.  相似文献   

12.
An estimating equation for a parameter θ, based on an observation ?, is an equation g(x,θ)=0 which can be solved for θ in terms of x. An estimating equation is unbiased if the funaction g has 0 mean for every θ. For the case when the form of the frequency function p(x,θ) is completely specified up to the unknown real parameter θ, the optimality of the m.1 equation ?logp=0 in the class of all unbiased estimating equations was established by Godambe (1960). In this paper we allow the form of the frequency function p to vary assuming that x=(x1,…,xn)?Rn and that under p, E(xi)=θ. x1,…, xn are independent observations on a variate x, it is shown that among all the unbiased estimating equations for θ, x??θ=0 is uniquely optimum up to a constant multiple.  相似文献   

13.
The problem of simultaneously selecting two non-empty subsets, SLand SU, of k populations which contain the lower extreme population (LEP) and the upper extreme population (UEP), respectively, is considered. Unknown parameters θ1,…,θkcharacterize the populations π1,…,πkand the populations associated with θ[1]=min θi. and θ[k]= max θi. are called the LEP and the UEP, respectively. It is assumed that the underlying distributions possess the monotone likelihood ratio property and that the prior distribution of θ= (θ1,…,θk) is exchangeable. The Bayes rule with respect to a general loss function is obtained. Bayes rule with respect to a semi-additive and non-negative loss function is also determined and it is shown that it is minimax and admissible. When the selected subsets are required to be disjoint, it shown that the Bayes rule with respect to a specific loss function can be obtained by comparing certain computable integrals, Application to normal distributions with unknown means θ1,…,θkand a common known variance is also considered.  相似文献   

14.
15.
For a class of discrete distributions, including Poisson(θ), Generalized Poisson(θ), Borel(m, θ), etc., we consider minimax estimation of the parameter θ under the assumption it lies in a bounded interval of the form [0, m] and a LINEX loss function. Explicit conditions for the minimax estimator to be Bayes with respect to a boundary supported prior are given. Also for Bernoulli(θ)-distribution, which is not in the mentioned class of discrete distributions, we give conditions for which the Bayes estimator of θ ∈ [0, m], m < 1 with respect to a boundary supported prior is minimax under LINEX loss function. Numerical values are given for the largest values of m for which the corresponding Bayes estimators of θ are minimax.  相似文献   

16.
Consider the canonical-form MANOVA setup with X: n × p = (+ E, Xi ni × p, i = 1, 2, 3, Mi: ni × p, i = 1, 2, n1 + n2 + n3) p, where E is a normally distributed error matrix with mean zero and dispersion In (> 0 (positive definite). Assume (in contrast with the usual case) that M1i is normal with mean zero and dispersion In1) and M22 is either fixed or random normal with mean zero and different dispersion matrix In2 (being unknown. It is also assumed that M1 E, and M2 (if random) are all independent. For testing H0) = 0 versus H1: (> 0, it is shown that when either n2 = 0 or M2 is fixed if n2 > 0, the trace test of Pillai (1955) is uniformly most powerful invariant (UMPI) if min(n1, p)= 1 and locally best invariant (LBI) if min(n1 p) > 1 underthe action of the full linear group Gl (p). When p > 1, the LBI test is also derived under a somewhat smaller group GT(p) of p × p lower triangular matrices with positive diagonal elements. However, such results do not hold if n2 > 0 and M2 is random. The null, nonnull, and optimality robustness of Pillai's trace test under Gl(p) for suitable deviations from normality is pointed out.  相似文献   

17.
X1, X2, …, Xk are k(k ? 2) uniform populations which each Xi follows U(0, θi). This note shows the test statistic for the null hypothesis H0: θ1 = θ2 = ??? = θk by using the order statistics.  相似文献   

18.
19.
The authors derive the null and non-null distributions of the test statistic v=ymin/ymax (where ymin= min xij, ymax= max xij, J=1,2, …, k) connected with testing the equality of scale parameters θ1, θ2, …θk in certain, class of density functions given by   相似文献   

20.
The generalized negative binomial (GNB) distribution was defined by Jain and Consul (SIAM J. Appl. Math., 21 (1971)) and was obtained as a particular family of Lagrangian distributions by Consul and Shenton (SIAM J. Appl. Math., 23 (1973)). Consul and Shenton also gave the probability generating function (p.g.f.) and proved many properties of the GNBD. Consul and Gupta (SIAM J. Appl. Math., 39 (1980)) proved that the parameter β must be either zero or 1≤ β ≤ θ-1 for the GNBD to be a true probability distribution and proved some other properties. Numerous applications and properties of this model have been studied by various researchers. Considering two independent GNB variates X and Y, with parameters (m,β,θ) and (n,β,θ) respectively, the probability distribuition of D = Y-X and its p.g.f. and cumulant generating function have been obtained. A recurrence relation between the cumulants has been established and the first four cumulants, β1 and β2 have been derived. Also some moments of the absolute difference |Y-X| have been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号