首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Markov chain Monte Carlo (MCMC) implementations of Bayesian inference for latent spatial Gaussian models are very computationally intensive, and restrictions on storage and computation time are limiting their application to large problems. Here we propose various parallel MCMC algorithms for such models. The algorithms' performance is discussed with respect to a simulation study, which demonstrates the increase in speed with which the algorithms explore the posterior distribution as a function of the number of processors. We also discuss how feasible problem size is increased by use of these algorithms.  相似文献   

2.
Summary.  We consider the application of Markov chain Monte Carlo (MCMC) estimation methods to random-effects models and in particular the family of discrete time survival models. Survival models can be used in many situations in the medical and social sciences and we illustrate their use through two examples that differ in terms of both substantive area and data structure. A multilevel discrete time survival analysis involves expanding the data set so that the model can be cast as a standard multilevel binary response model. For such models it has been shown that MCMC methods have advantages in terms of reducing estimate bias. However, the data expansion results in very large data sets for which MCMC estimation is often slow and can produce chains that exhibit poor mixing. Any way of improving the mixing will result in both speeding up the methods and more confidence in the estimates that are produced. The MCMC methodological literature is full of alternative algorithms designed to improve mixing of chains and we describe three reparameterization techniques that are easy to implement in available software. We consider two examples of multilevel survival analysis: incidence of mastitis in dairy cattle and contraceptive use dynamics in Indonesia. For each application we show where the reparameterization techniques can be used and assess their performance.  相似文献   

3.
We consider analysis of complex stochastic models based upon partial information. MCMC and reversible jump MCMC are often the methods of choice for such problems, but in some situations they can be difficult to implement; and suffer from problems such as poor mixing, and the difficulty of diagnosing convergence. Here we review three alternatives to MCMC methods: importance sampling, the forward-backward algorithm, and sequential Monte Carlo (SMC). We discuss how to design good proposal densities for importance sampling, show some of the range of models for which the forward-backward algorithm can be applied, and show how resampling ideas from SMC can be used to improve the efficiency of the other two methods. We demonstrate these methods on a range of examples, including estimating the transition density of a diffusion and of a discrete-state continuous-time Markov chain; inferring structure in population genetics; and segmenting genetic divergence data.  相似文献   

4.
Full likelihood-based inference for modern population genetics data presents methodological and computational challenges. The problem is of considerable practical importance and has attracted recent attention, with the development of algorithms based on importance sampling (IS) and Markov chain Monte Carlo (MCMC) sampling. Here we introduce a new IS algorithm. The optimal proposal distribution for these problems can be characterized, and we exploit a detailed analysis of genealogical processes to develop a practicable approximation to it. We compare the new method with existing algorithms on a variety of genetic examples. Our approach substantially outperforms existing IS algorithms, with efficiency typically improved by several orders of magnitude. The new method also compares favourably with existing MCMC methods in some problems, and less favourably in others, suggesting that both IS and MCMC methods have a continuing role to play in this area. We offer insights into the relative advantages of each approach, and we discuss diagnostics in the IS framework.  相似文献   

5.
In this paper, the Markov chain Monte Carlo (MCMC) method is used to estimate the parameters of a modified Weibull distribution based on a complete sample. While maximum-likelihood estimation (MLE) is the most used method for parameter estimation, MCMC has recently emerged as a good alternative. When applied to parameter estimation, MCMC methods have been shown to be easy to implement computationally, the estimates always exist and are statistically consistent, and their probability intervals are convenient to construct. Details of applying MCMC to parameter estimation for the modified Weibull model are elaborated and a numerical example is presented to illustrate the methods of inference discussed in this paper. To compare MCMC with MLE, a simulation study is provided, and the differences between the estimates obtained by the two algorithms are examined.  相似文献   

6.
Abstract.  In this paper we propose fast approximate methods for computing posterior marginals in spatial generalized linear mixed models. We consider the common geostatistical case with a high dimensional latent spatial variable and observations at known registration sites. The methods of inference are deterministic, using no simulation-based inference. The first proposed approximation is fast to compute and is 'practically sufficient', meaning that results do not show any bias or dispersion effects that might affect decision making. Our second approximation, an improvement of the first version, is 'practically exact', meaning that one would have to run MCMC simulations for very much longer than is typically done to detect any indication of error in the approximate results. For small-count data the approximations are slightly worse, but still very accurate. Our methods are limited to likelihood functions that give unimodal full conditionals for the latent variable. The methods help to expand the future scope of non-Gaussian geostatistical models as illustrated by applications of model choice, outlier detection and sampling design. The approximations take seconds or minutes of CPU time, in sharp contrast to overnight MCMC runs for solving such problems.  相似文献   

7.
ABSTRACT

Markov chain Monte Carlo (MCMC) methods can be used for statistical inference. The methods are time-consuming due to time-vary. To resolve these problems, parallel tempering (PT), as a parallel MCMC method, is tried, for dynamic generalized linear models (DGLMs), as well as the several optimal properties of our proposed method. In PT, two or more samples are drawn at the same time, and samples can exchange information with each other. We also present some simulations of the DGLMs in the case and provide two applications of Poisson-type DGLMs in financial research.  相似文献   

8.
This article designs a Sequential Monte Carlo (SMC) algorithm for estimation of Bayesian semi-parametric Stochastic Volatility model for financial data. In particular, it makes use of one of the most recent particle filters called Particle Learning (PL). SMC methods are especially well suited for state-space models and can be seen as a cost-efficient alternative to Markov Chain Monte Carlo (MCMC), since they allow for online type inference. The posterior distributions are updated as new data is observed, which is exceedingly costly using MCMC. Also, PL allows for consistent online model comparison using sequential predictive log Bayes factors. A simulated data is used in order to compare the posterior outputs for the PL and MCMC schemes, which are shown to be almost identical. Finally, a short real data application is included.  相似文献   

9.
Due to the escalating growth of big data sets in recent years, new Bayesian Markov chain Monte Carlo (MCMC) parallel computing methods have been developed. These methods partition large data sets by observations into subsets. However, for Bayesian nested hierarchical models, typically only a few parameters are common for the full data set, with most parameters being group specific. Thus, parallel Bayesian MCMC methods that take into account the structure of the model and split the full data set by groups rather than by observations are a more natural approach for analysis. Here, we adapt and extend a recently introduced two-stage Bayesian hierarchical modeling approach, and we partition complete data sets by groups. In stage 1, the group-specific parameters are estimated independently in parallel. The stage 1 posteriors are used as proposal distributions in stage 2, where the target distribution is the full model. Using three-level and four-level models, we show in both simulation and real data studies that results of our method agree closely with the full data analysis, with greatly increased MCMC efficiency and greatly reduced computation times. The advantages of our method versus existing parallel MCMC computing methods are also described.  相似文献   

10.
Hidden Markov random field models provide an appealing representation of images and other spatial problems. The drawback is that inference is not straightforward for these models as the normalisation constant for the likelihood is generally intractable except for very small observation sets. Variational methods are an emerging tool for Bayesian inference and they have already been successfully applied in other contexts. Focusing on the particular case of a hidden Potts model with Gaussian noise, we show how variational Bayesian methods can be applied to hidden Markov random field inference. To tackle the obstacle of the intractable normalising constant for the likelihood, we explore alternative estimation approaches for incorporation into the variational Bayes algorithm. We consider a pseudo-likelihood approach as well as the more recent reduced dependence approximation of the normalisation constant. To illustrate the effectiveness of these approaches we present empirical results from the analysis of simulated datasets. We also analyse a real dataset and compare results with those of previous analyses as well as those obtained from the recently developed auxiliary variable MCMC method and the recursive MCMC method. Our results show that the variational Bayesian analyses can be carried out much faster than the MCMC analyses and produce good estimates of model parameters. We also found that the reduced dependence approximation of the normalisation constant outperformed the pseudo-likelihood approximation in our analysis of real and synthetic datasets.  相似文献   

11.
As the number of applications for Markov Chain Monte Carlo (MCMC) grows, the power of these methods as well as their shortcomings become more apparent. While MCMC yields an almost automatic way to sample a space according to some distribution, its implementations often fall short of this task as they may lead to chains which converge too slowly or get trapped within one mode of a multi-modal space. Moreover, it may be difficult to determine if a chain is only sampling a certain area of the space or if it has indeed reached stationarity. In this paper, we show how a simple modification of the proposal mechanism results in faster convergence of the chain and helps to circumvent the problems described above. This mechanism, which is based on an idea from the field of “small-world” networks, amounts to adding occasional “wild” proposals to any local proposal scheme. We demonstrate through both theory and extensive simulations, that these new proposal distributions can greatly outperform the traditional local proposals when it comes to exploring complex heterogenous spaces and multi-modal distributions. Our method can easily be applied to most, if not all, problems involving MCMC and unlike many other remedies which improve the performance of MCMC it preserves the simplicity of the underlying algorithm.  相似文献   

12.
When MCMC methods for Bayesian spatiotemporal modeling are applied to large geostatistical problems, challenges arise as a consequence of memory requirements, computing costs, and convergence monitoring. This article describes the parallelization of a reparametrized and marginalized posterior sampling (RAMPS) algorithm, which is carefully designed to generate posterior samples efficiently. The algorithm is implemented using the Parallel Linear Algebra Package (PLAPACK). The scalability of the algorithm is investigated via simulation experiments that are implemented using a cluster with 25 processors. The usefulness of the method is illustrated with an application to sulfur dioxide concentration data from the Air Quality System database of the U.S. Environmental Protection Agency.  相似文献   

13.
Bayesian inference for fractionally integrated exponential generalized autoregressive conditional heteroscedastic (FIEGARCH) models using Markov chain Monte Carlo (MCMC) methods is described. A simulation study is presented to assess the performance of the procedure, under the presence of long-memory in the volatility. Samples from FIEGARCH processes are obtained upon considering the generalized error distribution (GED) for the innovation process. Different values for the tail-thickness parameter ν are considered covering both scenarios, innovation processes with lighter (ν > 2) and heavier (ν < 2) tails than the Gaussian distribution (ν = 2). A comparison between the performance of quasi-maximum likelihood (QML) and MCMC procedures is also discussed. An application of the MCMC procedure to estimate the parameters of a FIEGARCH model for the daily log-returns of the S&P500 U.S. stock market index is provided.  相似文献   

14.
文章针对正态分布数据,对比Traditional方法、Bootstrap方法和MCMC方法在两侧面交叉设计(p×i×h)和两侧面嵌套设计(p×(i:h))下各个方差分量的估计精度,为实际应用提供参考。使用R软件模拟1000批数据,并在R软件上实现三种方法的方差分量及其变异量估计。结果表明:(1)相较于Traditional方法和MCMC方法,相同条件下,Bootstrap方法估计的方差分量及其变异量结果更为理想;(2)对于两侧面交叉设计和两侧面嵌套设计,在正态分布数据下,建议优先使用Bootstrap方法。  相似文献   

15.
The analysis of infectious disease data presents challenges arising from the dependence in the data and the fact that only part of the transmission process is observable. These difficulties are usually overcome by making simplifying assumptions. The paper explores the use of Markov chain Monte Carlo (MCMC) methods for the analysis of infectious disease data, with the hope that they will permit analyses to be made under more realistic assumptions. Two important kinds of data sets are considered, containing temporal and non-temporal information, from outbreaks of measles and influenza. Stochastic epidemic models are used to describe the processes that generate the data. MCMC methods are then employed to perform inference in a Bayesian context for the model parameters. The MCMC methods used include standard algorithms, such as the Metropolis–Hastings algorithm and the Gibbs sampler, as well as a new method that involves likelihood approximation. It is found that standard algorithms perform well in some situations but can exhibit serious convergence difficulties in others. The inferences that we obtain are in broad agreement with estimates obtained by other methods where they are available. However, we can also provide inferences for parameters which have not been reported in previous analyses.  相似文献   

16.

Cluster point processes comprise a class of models that have been used for a wide range of applications. While several models have been studied for the probability density function of the offspring displacements and the parent point process, there are few examples of non-Poisson distributed cluster sizes. In this paper, we introduce a generalization of the Thomas process, which allows for the cluster sizes to have a variance that is greater or less than the expected value. We refer to this as the cluster sizes being over- and under-dispersed, respectively. To fit the model, we introduce minimum contrast methods and a Bayesian MCMC algorithm. These are evaluated in a simulation study. It is found that using the Bayesian MCMC method, we are in most cases able to detect over- and under-dispersion in the cluster sizes. We use the MCMC method to fit the model to nerve fiber data, and contrast the results to those of a fitted Thomas process.

  相似文献   

17.
We have compared the efficacy of five imputation algorithms readily available in SAS for the quadratic discriminant function. Here, we have generated several different parametric-configuration training data with missing data, including monotone missing-at-random observations, and used a Monte Carlo simulation to examine the expected probabilities of misclassification for the two-class quadratic statistical discrimination problem under five different imputation methods. Specifically, we have compared the efficacy of the complete observation-only method and the mean substitution, regression, predictive mean matching, propensity score, and Markov Chain Monte Carlo (MCMC) imputation methods. We found that the MCMC and propensity score multiple imputation approaches are, in general, superior to the other imputation methods for the configurations and training-sample sizes we considered.  相似文献   

18.
Particle MCMC involves using a particle filter within an MCMC algorithm. For inference of a model which involves an unobserved stochastic process, the standard implementation uses the particle filter to propose new values for the stochastic process, and MCMC moves to propose new values for the parameters. We show how particle MCMC can be generalised beyond this. Our key idea is to introduce new latent variables. We then use the MCMC moves to update the latent variables, and the particle filter to propose new values for the parameters and stochastic process given the latent variables. A generic way of defining these latent variables is to model them as pseudo-observations of the parameters or of the stochastic process. By choosing the amount of information these latent variables have about the parameters and the stochastic process we can often improve the mixing of the particle MCMC algorithm by trading off the Monte Carlo error of the particle filter and the mixing of the MCMC moves. We show that using pseudo-observations within particle MCMC can improve its efficiency in certain scenarios: dealing with initialisation problems of the particle filter; speeding up the mixing of particle Gibbs when there is strong dependence between the parameters and the stochastic process; and enabling further MCMC steps to be used within the particle filter.  相似文献   

19.
The Bayesian estimation and prediction problems for the linear hazard rate distribution under general progressively Type-II censored samples are considered in this article. The conventional Bayesian framework as well as the Markov Chain Monte Carlo (MCMC) method to generate the Bayesian conditional probabilities of interest are discussed. Sensitivity of the prior for the model is also examined. The flood data on Fox River, Wisconsin, from 1918 to 1950, are used to illustrate all the methods of inference discussed in this article.  相似文献   

20.
Markov chain Monte Carlo (MCMC) methods, while facilitating the solution of many complex problems in Bayesian inference, are not currently well adapted to the problem of marginal maximum a posteriori (MMAP) estimation, especially when the number of parameters is large. We present here a simple and novel MCMC strategy, called State-Augmentation for Marginal Estimation (SAME), which leads to MMAP estimates for Bayesian models. We illustrate the simplicity and utility of the approach for missing data interpolation in autoregressive time series and blind deconvolution of impulsive processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号