首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This article establishes the almost sure convergence and asymptotic normality of levels and differenced quasi maximum likelihood (QML) estimators of dynamic panel data models. The QML estimators are robust with respect to initial conditions, conditional and time-series heteroskedasticity, and misspecification of the log-likelihood. The article also provides an ECME algorithm for calculating levels QML estimates. Finally, it compares the finite-sample performance of levels and differenced QML estimators, the differenced generalized method of moments (GMM) estimator, and the system GMM estimator. The QML estimators usually have smaller— typically substantially smaller—bias and root mean squared errors than the panel data GMM estimators.  相似文献   

2.
This article extends the spatial panel data regression with fixed-effects to the case where the regression function is partially linear and some regressors may be endogenous or predetermined. Under the assumption that the spatial weighting matrix is strictly exogenous, we propose a sieve two stage least squares (S2SLS) regression. Under some sufficient conditions, we show that the proposed estimator for the finite dimensional parameter is root-N consistent and asymptotically normally distributed and that the proposed estimator for the unknown function is consistent and also asymptotically normally distributed but at a rate slower than root-N. Consistent estimators for the asymptotic variances of the proposed estimators are provided. A small scale simulation study is conducted, and the simulation results show that the proposed procedure has good finite sample performance.  相似文献   

3.
In the econometrics literature, it is standard practice to use the existing instrumental variables as well as generalized method of moments approaches for the estimation of the parameters of a linear dynamic mixed model for panel data. In this paper, we introduce a generalized quasi-likelihood estimation approach that produces estimates with smaller mean squared errors when compared with the aforementioned and other existing approaches.  相似文献   

4.
This paper is concerned with the estimation of a general class of nonlinear panel data models in which the conditional distribution of the dependent variable and the distribution of the heterogeneity factors are arbitrary. In general, exact analytical results for this problem do not exist. Here, Laplace and small-sigma appriximations for the marginal likelihood are presented. The computation of the MLE from both approximations is straightforward. It is shown that the accuracy of the Laplace approximation depends on both the sample size and the variance of the individual effects, whereas the accuracy of the small-sigma approximation is 0(1) with respect to the sample size. The results are applied to count, duration and probit panel data models. The accuracy of the approximations is evaluated through a Monte Carlo simulation experiment. The approximations are also applied in an analysis of youth unemployment in Australia.  相似文献   

5.
Anderson and his collaborators have made seminal contributions to inference with instrumental variables and to dynamic panel data models. We review these contributions and the extensive economic and statistical literature that these contributions spawned. We describe our recent work in these two areas, presenting new approaches to (a) making valid inferences in the presence of weak instruments and (b) instrument and model selection for dynamic panel data models. Both approaches use empirical likelihood and resampling. For inference in the presence of weak instruments, our approach uses model averaging to achieve asymptotic efficiency with strong instruments but maintain valid inferences with weak instruments. For instrument and model selection, our approach aims at choosing valid instruments that are strong enough to be useful.  相似文献   

6.
In this paper, we consider dynamic panel data models where the autoregressive parameter changes over time. We propose the GMM and ML estimators for this model. We conduct Monte Carlo simulation to compare the performance of these two estimators. The simulation results show that the ML estimator outperforms the GMM estimator.  相似文献   

7.
This article introduces the appropriate within estimators for the most frequently used three-dimensional fixed effects panel data models. It analyzes the behavior of these estimators in the cases of no self-flow data, unbalanced data, and dynamic autoregressive models. The main results are then generalized for higher dimensional panel data sets as well.  相似文献   

8.
We develop a hierarchical Bayesian approach for inference in random coefficient dynamic panel data models. Our approach allows for the initial values of each unit's process to be correlated with the unit-specific coefficients. We impose a stationarity assumption for each unit's process by assuming that the unit-specific autoregressive coefficient is drawn from a logitnormal distribution. Our method is shown to have favorable properties compared to the mean group estimator in a Monte Carlo study. We apply our approach to analyze energy and protein intakes among individuals from the Philippines.  相似文献   

9.
The existing studies on spatial dynamic panel data model (SDPDM) mainly focus on the normality assumption of response variables and random effects. This assumption may be inappropriate in some applications. This paper proposes a new SDPDM by assuming that response variables and random effects follow the multivariate skew-normal distribution. A Markov chain Monte Carlo algorithm is developed to evaluate Bayesian estimates of unknown parameters and random effects in skew-normal SDPDM by combining the Gibbs sampler and the Metropolis–Hastings algorithm. A Bayesian local influence analysis method is developed to simultaneously assess the effect of minor perturbations to the data, priors and sampling distributions. Simulation studies are conducted to investigate the finite-sample performance of the proposed methodologies. An example is illustrated by the proposed methodologies.  相似文献   

10.
ABSTRACT

This paper considers panel data models with fixed effects which have grouped patterns with unknown group membership. A two-stage estimation (TSE) procedure is developed to improve the properties of the GFE estimators of common parameters when the time span is small. Firstly, the common parameters are estimated. Subsequently, the optimal group assignment and the estimators of group effects are obtained by the K-means algorithm. Monte Carlo results reveal that the TSE estimator has a much smaller bias than the GFE estimator when the values of difference between effects are moderately small or at high variance of the idiosyncratic error.  相似文献   

11.
Qingguo Tang 《Statistics》2013,47(2):388-404
A global smoothing procedure is developed using B-spline function approximation for estimating the unknown functions of a functional coefficient regression model with spatial data. A general formulation is used to treat mean regression, median regression, quantile regression and robust mean regression in one setting. The global convergence rates of the estimators of unknown coefficient functions are established. Various applications of the main results, including estimating conditional quantile coefficient functions and robustifying the mean regression coefficient functions are given. Finite sample properties of our procedures are studied through Monte Carlo simulations. A housing data example is used to illustrate the proposed methodology.  相似文献   

12.
Jiang  Hangjin  Su  Wen  Zhao  Xingqiu 《Lifetime data analysis》2020,26(1):65-84
Lifetime Data Analysis - We consider the semiparametric regression of panel count data occurring in longitudinal follow-up studies that concern occurrence rate of certain recurrent events. The...  相似文献   

13.
In this paper, we consider inferences in a binary dynamic mixed model. The existing estimation approaches mainly estimate the regression effects and the dynamic dependence parameters either through the estimation of the random effects or by avoiding the random effects technically. Under the assumption that the random effects follow a Gaussian distribution, we propose a generalized quasilikelihood (GQL) approach for the estimation of the parameters of the dynamic mixed models. The proposed approach is computationally less cumbersome than the exact maximum likelihood (ML) approach. We also carry out the GQL estimation under two competitive, namely, probit and logit mixed models, and discuss both the asymptotic and small-sample behaviour of their estimators.  相似文献   

14.
15.
ABSTRACT

This paper proposes an exponential class of dynamic binary choice panel data models for the analysis of short T (time dimension) large N (cross section dimension) panel data sets that allow for unobserved heterogeneity (fixed effects) to be arbitrarily correlated with the covariates. The paper derives moment conditions that are invariant to the fixed effects which are then used to identify and estimate the parameters of the model. Accordingly, generalized method of moments (GMM) estimators are proposed that are consistent and asymptotically normally distributed at the root-N rate. We also study the conditional likelihood approach and show that under exponential specification, it can identify the effect of state dependence but not the effects of other covariates. Monte Carlo experiments show satisfactory finite sample performance for the proposed estimators and investigate their robustness to misspecification.  相似文献   

16.
This paper proposes a generalized least squares and a generalized method of moment estimators for dynamic panel data models with both individual-specific and time-specific effects. We also demonstrate that the common estimators ignoring the presence of time-specific effects are inconsistent when N→∞N but T is finite if the time-specific effects are indeed present. Monte Carlo studies are also conducted to investigate the finite sample properties of various estimators. It is found that the generalized least squares estimator has the smallest bias and root mean square error, and also has nominal size close to the empirical size. It is also found that even when there is no presence of time-specific effects, there is hardly any efficiency loss of the generalized least squares estimator assuming its presence compared to the generalized least squares estimator allowing only the presence of individual-specific effects.  相似文献   

17.
In this article, we propose instrumental variables (IV) and generalized method of moments (GMM) estimators for panel data models with weakly exogenous variables. The model is allowed to include heterogeneous time trends besides the standard fixed effects (FE). The proposed IV and GMM estimators are obtained by applying a forward filter to the model and a backward filter to the instruments in order to remove FE, thereby called the double filter IV and GMM estimators. We derive the asymptotic properties of the proposed estimators under fixed T and large N, and large T and large N asymptotics where N and T denote the dimensions of cross section and time series, respectively. It is shown that the proposed IV estimator has the same asymptotic distribution as the bias corrected FE estimator when both N and T are large. Monte Carlo simulation results reveal that the proposed estimator performs well in finite samples and outperforms the conventional IV/GMM estimators using instruments in levels in many cases.  相似文献   

18.
Abstract

In this article, we consider a panel data partially linear regression model with fixed effect and non parametric time trend function. The data can be dependent cross individuals through linear regressor and error components. Unlike the methods using non parametric smoothing technique, a difference-based method is proposed to estimate linear regression coefficients of the model to avoid bandwidth selection. Here the difference technique is employed to eliminate the non parametric function effect, not the fixed effects, on linear regressor coefficient estimation totally. Therefore, a more efficient estimator for parametric part is anticipated, which is shown to be true by the simulation results. For the non parametric component, the polynomial spline technique is implemented. The asymptotic properties of estimators for parametric and non parametric parts are presented. We also show how to select informative ones from a number of covariates in the linear part by using smoothly clipped absolute deviation-penalized estimators on a difference-based least-squares objective function, and the resulting estimators perform asymptotically as well as the oracle procedure in terms of selecting the correct model.  相似文献   

19.
In this paper we review existing work on robust estimation for simultaneous equations models. Then we sketch three strategies for obtaining estimators with a high breakdown point and a controllable efficiency: (a) robustifying three-stage least squares, (b) robustifying the full information maximum likelihood method by minimizing the determinant of a robust covariance matrix of residuals, and (c) generalizing multivariate tau-estimators (Lopuhaä, 1992, Can. J. Statist., 19, 307–321) to these models. They have the same order of computational complexity as high breakdown point multivariate estimators. The latter seems the most promising approach.  相似文献   

20.
The growth curve model introduced by potthoff and Roy 1964 is a general statistical model which includes as special cases regression models and both univariate and multivariate analysis of variance models. The methods currently available for estimating the parameters of this model assume an underlying multivariate normal distribution of errors. In this paper, we discuss tw robst estimators of the growth curve loction and scatter parameters based upon M-estimation techniques and the work done by maronna 1976. The asymptotic distribution of these robust estimators are discussed and a numerical example given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号