首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we introduce a new family of discrete distributions and study its properties. It is shown that the new family is a generalization of discrete Marshall-Olkin family of distributions. In particular, we study generalized discrete Weibull distribution in detail. Discrete Marshall-Olkin Weibull distribution, exponentiated discrete Weibull distribution, discrete Weibull distribution, discrete Marshall-Olkin generalized exponential distribution, exponentiated geometric distribution, generalized discrete exponential distribution, discrete Marshall-Olkin Rayleigh distribution and exponentiated discrete Rayleigh distribution are sub-models of generalized discrete Weibull distribution. We derive some basic distributional properties such as probability generating function, moments, hazard rate and quantiles of the generalized discrete Weibull distribution. We can see that the hazard rate function can be decreasing, increasing, bathtub and upside-down bathtub shape. Estimation of the parameters are done using maximum likelihood method. A real data set is analyzed to illustrate the suitability of the proposed model.  相似文献   

2.
We introduce and study the so-called Kumaraswamy generalized gamma distribution that is capable of modeling bathtub-shaped hazard rate functions. The beauty and importance of this distribution lies in its ability to model monotone and non-monotone failure rate functions, which are quite common in lifetime data analysis and reliability. The new distribution has a large number of well-known lifetime special sub-models such as the exponentiated generalized gamma, exponentiated Weibull, exponentiated generalized half-normal, exponentiated gamma, generalized Rayleigh, among others. Some structural properties of the new distribution are studied. We obtain two infinite sum representations for the moments and an expansion for the generating function. We calculate the density function of the order statistics and an expansion for their moments. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. The usefulness of the new distribution is illustrated in two real data sets.  相似文献   

3.
A five-parameter extension of the Weibull distribution capable of modelling a bathtub-shaped hazard rate function is introduced and studied. The beauty and importance of the new distribution lies in its ability to model both monotone and non-monotone failure rates that are quite common in lifetime problems and reliability. The proposed distribution has a number of well-known lifetime distributions as special sub-models, such as the Weibull, extreme value, exponentiated Weibull, generalized Rayleigh and modified Weibull (MW) distributions, among others. We obtain quantile and generating functions, mean deviations, Bonferroni and Lorenz curves and reliability. We provide explicit expressions for the density function of the order statistics and their moments. For the first time, we define the log-Kumaraswamy MW regression model to analyse censored data. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is determined. Two applications illustrate the potentiality of the proposed distribution.  相似文献   

4.
A four-parameter extension of the generalized gamma distribution capable of modelling a bathtub-shaped hazard rate function is defined and studied. The beauty and importance of this distribution lies in its ability to model monotone and non-monotone failure rate functions, which are quite common in lifetime data analysis and reliability. The new distribution has a number of well-known lifetime special sub-models, such as the exponentiated Weibull, exponentiated generalized half-normal, exponentiated gamma and generalized Rayleigh, among others. We derive two infinite sum representations for its moments. We calculate the density of the order statistics and two expansions for their moments. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is obtained. Finally, a real data set from the medical area is analysed.  相似文献   

5.
The exponential and Rayleigh are the two most commonly used distributions for analyzing lifetime data. These distributions have several desirable properties and nice physical interpretations. Unfortunately, the exponential distribution only has constant failure rate and the Rayleigh distribution has increasing failure rate. The linear failure rate distribution generalizes both these distributions which may have non increasing hazard function also. This article introduces a new distribution, which generalizes linear failure rate distribution. This distribution generalizes the well-known (1) exponential distribution, (2) linear failure rate distribution, (3) generalized exponential distribution, and (4) generalized Rayleigh distribution. The properties of this distribution are discussed in this article. The maximum likelihood estimates of the unknown parameters are obtained. A real data set is analyzed and it is observed that the present distribution can provide a better fit than some other very well-known distributions.  相似文献   

6.
We introduce a new family of distributions suitable for fitting positive data sets with high kurtosis which is called the Slashed Generalized Rayleigh Distribution. This distribution arises as the quotient of two independent random variables, one being a generalized Rayleigh distribution in the numerator and the other a power of the uniform distribution in the denominator. We present properties and carry out estimation of the model parameters by moment and maximum likelihood (ML) methods. Finally, we conduct a small simulation study to evaluate the performance of ML estimators and analyze real data sets to illustrate the usefulness of the new model.  相似文献   

7.
The beta modified Weibull distribution   总被引:2,自引:0,他引:2  
A five-parameter distribution so-called the beta modified Weibull distribution is defined and studied. The new distribution contains, as special submodels, several important distributions discussed in the literature, such as the generalized modified Weibull, beta Weibull, exponentiated Weibull, beta exponential, modified Weibull and Weibull distributions, among others. The new distribution can be used effectively in the analysis of survival data since it accommodates monotone, unimodal and bathtub-shaped hazard functions. We derive the moments and examine the order statistics and their moments. We propose the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set is used to illustrate the importance and flexibility of the new distribution.  相似文献   

8.
B. Klar 《Statistics》2013,47(6):505-515
Surles and Padgett recently introduced two-parameter Burr Type X distribution, which can also be described as the generalized Rayleigh distribution. It is observed that the generalized Rayleigh and log-normal distributions have many common properties and both the distributions can be used quite effectively to analyze skewed data set. For a given data set the problem of selecting either generalized Rayleigh or log-normal distribution is discussed in this paper. The ratio of maximized likelihood (RML) is used in discriminating between the two distributing functions. Asymptotic distributions of the RML under null hypotheses are obtained and they are used to determine the minimum sample size required in discriminating between these two families of distributions for a used specified probability of correct selection and the tolerance limit.  相似文献   

9.
A new distribution called the beta generalized exponential distribution is proposed. It includes the beta exponential and generalized exponential (GE) distributions as special cases. We provide a comprehensive mathematical treatment of this distribution. The density function can be expressed as a mixture of generalized exponential densities. This is important to obtain some mathematical properties of the new distribution in terms of the corresponding properties of the GE distribution. We derive the moment generating function (mgf) and the moments, thus generalizing some results in the literature. Expressions for the density, mgf and moments of the order statistics are also obtained. We discuss estimation of the parameters by maximum likelihood and obtain the information matrix that is easily numerically determined. We observe in one application to a real skewed data set that this model is quite flexible and can be used effectively in analyzing positive data in place of the beta exponential and GE distributions.  相似文献   

10.
Surles and Padgett recently considered two-parameter Burr Type X distribution by introducing a scale parameter and called it the generalized Rayleigh distribution. It is observed that the generalized Rayleigh and log-normal distributions have many common properties and both distributions can be used quite effectively to analyze skewed data set. In this paper, we mainly compare the Fisher information matrices of the two distributions for complete and censored observations. Although, both distributions may provide similar data fit and are quite similar in nature in many aspects, the corresponding Fisher information matrices can be quite different. We compute the total information measures of the two distributions for different parameter ranges and also compare the loss of information due to censoring. Real data analysis has been performed for illustrative purposes.  相似文献   

11.
Kumaraswamy [Generalized probability density-function for double-bounded random-processes, J. Hydrol. 462 (1980), pp. 79–88] introduced a distribution for double-bounded random processes with hydrological applications. For the first time, based on this distribution, we describe a new family of generalized distributions (denoted with the prefix ‘Kw’) to extend the normal, Weibull, gamma, Gumbel, inverse Gaussian distributions, among several well-known distributions. Some special distributions in the new family such as the Kw-normal, Kw-Weibull, Kw-gamma, Kw-Gumbel and Kw-inverse Gaussian distribution are discussed. We express the ordinary moments of any Kw generalized distribution as linear functions of probability weighted moments (PWMs) of the parent distribution. We also obtain the ordinary moments of order statistics as functions of PWMs of the baseline distribution. We use the method of maximum likelihood to fit the distributions in the new class and illustrate the potentiality of the new model with an application to real data.  相似文献   

12.
For the first time, we introduce the beta log-normal (LN) distribution for which the LN distribution is a special case. Various properties of the new distribution are discussed. Expansions for the cumulative distribution and density functions that do not involve complicated functions are derived. We obtain expressions for its moments and for the moments of order statistics. The estimation of parameters is approached by the method of maximum likelihood, and the expected information matrix is derived. The new model is quite flexible in analysing positive data as an important alternative to the gamma, Weibull, generalized exponential, beta exponential, and Birnbaum–Saunders distributions. The flexibility of the new distribution is illustrated in an application to a real data set.  相似文献   

13.
Abstract

We introduce a new family of distributions using truncated discrete Linnik distribution. This family is a rich family of distributions which includes many important families of distributions such as Marshall–Olkin family of distributions, family of distributions generated through truncated negative binomial distribution, family of distributions generated through truncated discrete Mittag–Leffler distribution etc. Some properties of the new family of distributions are derived. A particular case of the family, a five parameter generalization of Weibull distribution, namely discrete Linnik Weibull distribution is given special attention. This distribution is a generalization of many distributions, such as extended exponentiated Weibull, exponentiated Weibull, Weibull truncated negative binomial, generalized exponential truncated negative binomial, Marshall-Olkin extended Weibull, Marshall–Olkin generalized exponential, exponential truncated negative binomial, Marshall–Olkin exponential and generalized exponential. The shape properties, moments, median, distribution of order statistics, stochastic ordering and stress–strength properties of the new generalized Weibull distribution are derived. The unknown parameters of the distribution are estimated using maximum likelihood method. The discrete Linnik Weibull distribution is fitted to a survival time data set and it is shown that the distribution is more appropriate than other competitive models.  相似文献   

14.
For any continuous baseline G distribution, Zografos and Balakrishnan [On families of beta- and generalized gamma-generated distributions and associated inference. Statist Methodol. 2009;6:344–362] introduced the generalized gamma-generated distribution with an extra positive parameter. A new three-parameter continuous model called the gamma-linear failure rate (LFR) distribution, which extends the LFR model, is proposed and studied. Various structural properties of the new distribution are derived, including some explicit expressions for ordinary and incomplete moments, generating function, probability-weighted moments, mean deviations and Rényi and Shannon entropies. We estimate the model parameters by maximum likelihood and obtain the observed information matrix. The new model is modified to cope with possible long-term survivors in lifetime data. We illustrate the usefulness of the proposed model by means of two applications to real data.  相似文献   

15.
In this article, we investigate the potential usefulness of the three-parameter transmuted generalized exponential distribution for analyzing lifetime data. We compare it with various generalizations of the two-parameter exponential distribution using maximum likelihood estimation. Some mathematical properties of the new extended model including expressions for the quantile and moments are investigated. We propose a location-scale regression model, based on the log-transmuted generalized exponential distribution. Two applications with real data are given to illustrate the proposed family of lifetime distributions.  相似文献   

16.
In this paper, the Rayleigh–Lindley (RL) distribution is introduced, obtained by compounding the Rayleigh and Lindley discrete distributions, where the compounding procedure follows an approach similar to the one previously studied by Adamidis and Loukas in some other contexts. The resulting distribution is a two-parameter model, which is competitive with other parsimonious models such as the gamma and Weibull distributions. We study some properties of this new model such as the moments and the mean residual life. The estimation was approached via EM algorithm. The behavior of these estimators was studied in finite samples through a simulation study. Finally, we report two real data illustrations in order to show the performance of the proposed model versus other common two-parameter models in the literature. The main conclusion is that the model proposed can be a valid alternative to other competing models well established in the literature.  相似文献   

17.
For the first time, we introduce a generalized form of the exponentiated generalized gamma distribution [Cordeiro et al. The exponentiated generalized gamma distribution with application to lifetime data, J. Statist. Comput. Simul. 81 (2011), pp. 827–842.] that is the baseline for the log-exponentiated generalized gamma regression model. The new distribution can accommodate increasing, decreasing, bathtub- and unimodal-shaped hazard functions. A second advantage is that it includes classical distributions reported in the lifetime literature as special cases. We obtain explicit expressions for the moments of the baseline distribution of the new regression model. The proposed model can be applied to censored data since it includes as sub-models several widely known regression models. It therefore can be used more effectively in the analysis of survival data. We obtain maximum likelihood estimates for the model parameters by considering censored data. We show that our extended regression model is very useful by means of two applications to real data.  相似文献   

18.
We present a new generalized family of skew two-piece skew-elliptical (GSTPSE) models and derive some its statistical properties. It is shown that the new family of distribution may be written as a mixture of generalized skew elliptical distributions. Also, a new representation theorem for a special case of GSTPSE-distribution is given. Next, we will focus on t kernel density and prove that it is a scale mixture of the generalized skew two-piece skew normal distributions. An explicit expression for the central moments as well as a recurrence relations for its cumulative distribution function and density are obtained. Since, this special case is a uni-/bimodal distribution, a sufficient condition for each cases is given. A real data set on heights of Australian females athletes is analysed. Finally, some concluding remarks and open problems are discussed.  相似文献   

19.
In this paper, we propose a new three-parameter model called the exponential–Weibull distribution, which includes as special models some widely known lifetime distributions. Some mathematical properties of the proposed distribution are investigated. We derive four explicit expressions for the generalized ordinary moments and a general formula for the incomplete moments based on infinite sums of Meijer's G functions. We also obtain explicit expressions for the generating function and mean deviations. We estimate the model parameters by maximum likelihood and determine the observed information matrix. Some simulations are run to assess the performance of the maximum likelihood estimators. The flexibility of the new distribution is illustrated by means of an application to real data.  相似文献   

20.
For the first time, a new five-parameter distribution, called the beta generalized gamma distribution, is introduced and studied. It contains at least 25 special sub-models such as the beta gamma, beta Weibull, beta exponential, generalized gamma (GG), Weibull and gamma distributions and thus could be a better model for analysing positive skewed data. The new density function can be expressed as a linear combination of GG densities. We derive explicit expressions for moments, generating function and other statistical measures. The elements of the expected information matrix are provided. The usefulness of the new model is illustrated by means of a real data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号