首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are two conceptually distinct tasks in Markov chain Monte Carlo (MCMC): a sampler is designed for simulating a Markov chain and then an estimator is constructed on the Markov chain for computing integrals and expectations. In this article, we aim to address the second task by extending the likelihood approach of Kong et al. for Monte Carlo integration. We consider a general Markov chain scheme and use partial likelihood for estimation. Basically, the Markov chain scheme is treated as a random design and a stratified estimator is defined for the baseline measure. Further, we propose useful techniques including subsampling, regulation, and amplification for achieving overall computational efficiency. Finally, we introduce approximate variance estimators for the point estimators. The method can yield substantially improved accuracy compared with Chib's estimator and the crude Monte Carlo estimator, as illustrated with three examples.  相似文献   

2.
In this paper, we discuss some theoretical results and properties of the discrete Weibull distribution, which was introduced by Nakagawa and Osaki [The discrete Weibull distribution. IEEE Trans Reliab. 1975;24:300–301]. We study the monotonicity of the probability mass, survival and hazard functions. Moreover, reliability, moments, p-quantiles, entropies and order statistics are also studied. We consider likelihood-based methods to estimate the model parameters based on complete and censored samples, and to derive confidence intervals. We also consider two additional methods to estimate the model parameters. The uniqueness of the maximum likelihood estimate of one of the parameters that index the discrete Weibull model is discussed. Numerical evaluation of the considered model is performed by Monte Carlo simulations. For illustrative purposes, two real data sets are analyzed.  相似文献   

3.
The analysis of infectious disease data presents challenges arising from the dependence in the data and the fact that only part of the transmission process is observable. These difficulties are usually overcome by making simplifying assumptions. The paper explores the use of Markov chain Monte Carlo (MCMC) methods for the analysis of infectious disease data, with the hope that they will permit analyses to be made under more realistic assumptions. Two important kinds of data sets are considered, containing temporal and non-temporal information, from outbreaks of measles and influenza. Stochastic epidemic models are used to describe the processes that generate the data. MCMC methods are then employed to perform inference in a Bayesian context for the model parameters. The MCMC methods used include standard algorithms, such as the Metropolis–Hastings algorithm and the Gibbs sampler, as well as a new method that involves likelihood approximation. It is found that standard algorithms perform well in some situations but can exhibit serious convergence difficulties in others. The inferences that we obtain are in broad agreement with estimates obtained by other methods where they are available. However, we can also provide inferences for parameters which have not been reported in previous analyses.  相似文献   

4.
Markov chain Monte Carlo (MCMC) methods, including the Gibbs sampler and the Metropolis–Hastings algorithm, are very commonly used in Bayesian statistics for sampling from complicated, high-dimensional posterior distributions. A continuing source of uncertainty is how long such a sampler must be run in order to converge approximately to its target stationary distribution. A method has previously been developed to compute rigorous theoretical upper bounds on the number of iterations required to achieve a specified degree of convergence in total variation distance by verifying drift and minorization conditions. We propose the use of auxiliary simulations to estimate the numerical values needed in this theorem. Our simulation method makes it possible to compute quantitative convergence bounds for models for which the requisite analytical computations would be prohibitively difficult or impossible. On the other hand, although our method appears to perform well in our example problems, it cannot provide the guarantees offered by analytical proof.  相似文献   

5.
Summary.  We discuss the inversion of the gas profiles (ozone, NO3, NO2, aerosols and neutral density) in the upper atmosphere from the spectral occultation measurements. The data are produced by the 'Global ozone monitoring of occultation of stars' instrument on board the Envisat satellite that was launched in March 2002. The instrument measures the attenuation of light spectra at various horizontal paths from about 100 km down to 10–20 km. The new feature is that these data allow the inversion of the gas concentration height profiles. A short introduction is given to the present operational data management procedure with examples of the first real data inversion. Several solution options for a more comprehensive statistical inversion are presented. A direct inversion leads to a non-linear model with hundreds of parameters to be estimated. The problem is solved with an adaptive single-step Markov chain Monte Carlo algorithm. Another approach is to divide the problem into several non-linear smaller dimensional problems, to run parallel adaptive Markov chain Monte Carlo chains for them and to solve the gas profiles in repetitive linear steps. The effect of grid size is discussed, and we present how the prior regularization takes the grid size into account in a way that effectively leads to a grid-independent inversion.  相似文献   

6.
Summary.  In recent years, advances in Markov chain Monte Carlo techniques have had a major influence on the practice of Bayesian statistics. An interesting but hitherto largely underexplored corollary of this fact is that Markov chain Monte Carlo techniques make it practical to consider broader classes of informative priors than have been used previously. Conjugate priors, long the workhorse of classic methods for eliciting informative priors, have their roots in a time when modern computational methods were unavailable. In the current environment more attractive alternatives are practicable. A reappraisal of these classic approaches is undertaken, and principles for generating modern elicitation methods are described. A new prior elicitation methodology in accord with these principles is then presented.  相似文献   

7.
We consider conditional exact tests of factor effects in designed experiments for discrete response variables. Similarly to the analysis of contingency tables, a Markov chain Monte Carlo method can be used for performing exact tests, when large-sample approximations are poor and the enumeration of the conditional sample space is infeasible. For designed experiments with a single observation for each run, we formulate log-linear or logistic models and consider a connected Markov chain over an appropriate sample space. In particular, we investigate fractional factorial designs with 2p-q2p-q runs, noting correspondences to the models for 2p-q2p-q contingency tables.  相似文献   

8.
Summary.  We present an application of reversible jump Markov chain Monte Carlo sampling from the field of neurophysiology where we seek to estimate the number of motor units within a single muscle. Such an estimate is needed for monitoring the progression of neuromuscular diseases such as amyotrophic lateral sclerosis. Our data consist of action potentials that were recorded from the surface of a muscle in response to stimuli of different intensities applied to the nerve supplying the muscle. During the gradual increase in intensity of the stimulus from the threshold to supramaximal, all motor units are progressively excited. However, at any given submaximal intensity of stimulus, the number of units that are excited is variable, because of random fluctuations in axonal excitability. Furthermore, the individual motor unit action potentials exhibit variability. To account for these biological properties, Ridall and co-workers developed a model of motor unit activation that is capable of describing the response where the number of motor units, N , is fixed. The purpose of this paper is to extend that model so that the possible number of motor units, N , is a stochastic variable. We illustrate the elements of our model, show that the results are reproducible and show that our model can measure the decline in motor unit numbers during the course of amyotrophic lateral sclerosis. Our method holds promise of being useful in the study of neurogenic diseases.  相似文献   

9.
We consider importance sampling (IS) type weighted estimators based on Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target distribution. In the context of Bayesian latent variable models, the MCMC typically operates on the hyperparameters, and the subsequent weighting may be based on IS or sequential Monte Carlo (SMC), but allows for multilevel techniques as well. The IS approach provides a natural alternative to delayed acceptance (DA) pseudo-marginal/particle MCMC, and has many advantages over DA, including a straightforward parallelization and additional flexibility in MCMC implementation. We detail minimal conditions which ensure strong consistency of the suggested estimators, and provide central limit theorems with expressions for asymptotic variances. We demonstrate how our method can make use of SMC in the state space models context, using Laplace approximations and time-discretized diffusions. Our experimental results are promising and show that the IS-type approach can provide substantial gains relative to an analogous DA scheme, and is often competitive even without parallelization.  相似文献   

10.
11.
While Markov chain Monte Carlo (MCMC) methods are frequently used for difficult calculations in a wide range of scientific disciplines, they suffer from a serious limitation: their samples are not independent and identically distributed. Consequently, estimates of expectations are biased if the initial value of the chain is not drawn from the target distribution. Regenerative simulation provides an elegant solution to this problem. In this article, we propose a simple regenerative MCMC algorithm to generate variates for any distribution.  相似文献   

12.
Weibull distributions have received wide ranging applications in many areas including reliability, hydrology and communication systems. Many estimation methods have been proposed for Weibull distributions. But there has not been a comprehensive comparison of these estimation methods. Most studies have focused on comparing the maximum likelihood estimation (MLE) with one of the other approaches. In this paper, we first propose an L-moment estimator for the Weibull distribution. Then, a comprehensive comparison is made of the following methods: the method of maximum likelihood estimation (MLE), the method of logarithmic moments, the percentile method, the method of moments and the method of L-moments.  相似文献   

13.
Hidden Markov models form an extension of mixture models which provides a flexible class of models exhibiting dependence and a possibly large degree of variability. We show how reversible jump Markov chain Monte Carlo techniques can be used to estimate the parameters as well as the number of components of a hidden Markov model in a Bayesian framework. We employ a mixture of zero-mean normal distributions as our main example and apply this model to three sets of data from finance, meteorology and geomagnetism.  相似文献   

14.
Data collected before the routine application of prenatal screening are of unique value in estimating the natural live-birth prevalence of Down syndrome. However, much of these data are from births from over 20 years ago and they are of uncertain quality. In particular, they are subject to varying degrees of underascertainment. Published approaches have used ad hoc corrections to deal with this problem or have been restricted to data sets in which ascertainment is assumed to be complete. In this paper we adopt a Bayesian approach to modelling ascertainment and live-birth prevalence. We consider three prior specifications concerning ascertainment and compare predicted maternal-age-specific prevalence under these three different prior specifications. The computations are carried out by using Markov chain Monte Carlo methods in which model parameters and missing data are sampled.  相似文献   

15.
Markov chain Monte Carlo (MCMC) implementations of Bayesian inference for latent spatial Gaussian models are very computationally intensive, and restrictions on storage and computation time are limiting their application to large problems. Here we propose various parallel MCMC algorithms for such models. The algorithms' performance is discussed with respect to a simulation study, which demonstrates the increase in speed with which the algorithms explore the posterior distribution as a function of the number of processors. We also discuss how feasible problem size is increased by use of these algorithms.  相似文献   

16.
Yu (1995) provides a novel convergence diagnostic for Markov chain Monte Carlo (MCMC) which provides a qualitative measure of mixing for Markov chains via a cusum path plot for univariate parameters of interest. The method is based upon the output of a single replication of an MCMC sampler and is therefore widely applicable and simple to use. One criticism of the method is that it is subjective in its interpretation, since it is based upon a graphical comparison of two cusum path plots. In this paper, we develop a quantitative measure of smoothness which we can associate with any given cusum path, and show how we can use this measure to obtain a quantitative measure of mixing. In particular, we derive the large sample distribution of this smoothness measure, so that objective inference is possible. In addition, we show how this quantitative measure may also be used to provide an estimate of the burn-in length for any given sampler. We discuss the utility of this quantitative approach, and highlight a problem which may occur if the chain is able to remain in any one state for some period of time. We provide a more general implementation of the method to overcome the problem in such cases.  相似文献   

17.
We propose a two-stage algorithm for computing maximum likelihood estimates for a class of spatial models. The algorithm combines Markov chain Monte Carlo methods such as the Metropolis–Hastings–Green algorithm and the Gibbs sampler, and stochastic approximation methods such as the off-line average and adaptive search direction. A new criterion is built into the algorithm so stopping is automatic once the desired precision has been set. Simulation studies and applications to some real data sets have been conducted with three spatial models. We compared the algorithm proposed with a direct application of the classical Robbins–Monro algorithm using Wiebe's wheat data and found that our procedure is at least 15 times faster.  相似文献   

18.
Developing prediction bounds for surgery duration is difficult due to the large number of distinct procedures. The variety of procedures at a multi-speciality surgery suite means that even with several years of historical data a large fraction of surgical cases will have little or no historical data for use in predicting case duration. Bayesian methods can be used to combine historical data with expert judgement to provide estimates to overcome this, but eliciting expert opinion for a probability distribution can be difficult. We combine expert judgement, expert classification of procedures by complexity category and historical data in a Markov Chain Monte Carlo model and test it against one year of actual surgery cases at a multi-speciality surgical suite.  相似文献   

19.
We study in detail the so-called beta-modified Weibull distribution, motivated by the wide use of the Weibull distribution in practice, and also for the fact that the generalization provides a continuous crossover towards cases with different shapes. The new distribution is important since it contains as special sub-models some widely-known distributions, such as the generalized modified Weibull, beta Weibull, exponentiated Weibull, beta exponential, modified Weibull and Weibull distributions, among several others. It also provides more flexibility to analyse complex real data. Various mathematical properties of this distribution are derived, including its moments and moment generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are also derived for the chf, mean deviations, Bonferroni and Lorenz curves, reliability and entropies. The estimation of parameters is approached by two methods: moments and maximum likelihood. We compare by simulation the performances of the estimates from these methods. We obtain the expected information matrix. Two applications are presented to illustrate the proposed distribution.  相似文献   

20.
Markov chain Monte Carlo (MCMC) methods are now widely used in a diverse range of application areas to tackle previously intractable problems. Difficult questions remain, however, in designing MCMC samplers for problems exhibiting severe multimodality where standard methods may exhibit prohibitively slow movement around the state space. Auxiliary variable methods, sometimes together with multigrid ideas, have been proposed as one possible way forward. Initial disappointing experiments have led to data-driven modifications of the methods. In this paper, these suggestions are investigated for lattice data such as is found in imaging and some spatial applications. The results suggest that adapting the auxiliary variables to the specific application is beneficial. However the form of adaptation needed and the extent of the resulting benefits are not always clear-cut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号