首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This article extends the spatial panel data regression with fixed-effects to the case where the regression function is partially linear and some regressors may be endogenous or predetermined. Under the assumption that the spatial weighting matrix is strictly exogenous, we propose a sieve two stage least squares (S2SLS) regression. Under some sufficient conditions, we show that the proposed estimator for the finite dimensional parameter is root-N consistent and asymptotically normally distributed and that the proposed estimator for the unknown function is consistent and also asymptotically normally distributed but at a rate slower than root-N. Consistent estimators for the asymptotic variances of the proposed estimators are provided. A small scale simulation study is conducted, and the simulation results show that the proposed procedure has good finite sample performance.  相似文献   

2.
M. Nussbaum 《Statistics》2013,47(2):173-198
For the problem of estimating a linear functional relation when the ratio of the error variances is known a general class of estimators is introduced. They include as special cases the instrumental variable and replication cases and some others. Conditions are given for consistency, asymptotic normality and asymptotic optimality within this class based on the variance of the limit distribution. Fisheb's lower bound for asymptotic variances is established, and under normality the asymptotically optimal estimators are shown to be best asymptotically normal. For an inhomogeneous linear relation only estimators which are invariant with respect to a translation of the origin are considered, and asymptotically optimal invariant and, under normality, best asymptotically normal invariant estimators are obtained. Several special cases are discussed.  相似文献   

3.
This paper considers semiparametric partially linear single-index model with missing responses at random. Imputation approach is developed to estimate the regression coefficients, single-index coefficients and the nonparametric function, respectively. The imputation estimators for the regression coefficients and single-index coefficients are obtained by a stepwise approach. These estimators are shown to be asymptotically normal, and the estimator for the nonparametric function is proved to be asymptotically normal at any fixed point. The bandwidth problem is also considered in this paper, a delete-one cross validation method is used to select the optimal bandwidth. A simulation study is conducted to evaluate the proposed methods.  相似文献   

4.
This paper studies estimation of a partially specified spatial panel data linear regression with random-effects and spatially correlated error components. Under the assumption of exogenous spatial weighting matrix and exogenous regressors, the unknown parameter is estimated by applying the instrumental variable estimation. Under some sufficient conditions, the proposed estimator for the finite dimensional parameters is shown to be root-N consistent and asymptotically normally distributed; the proposed estimator for the unknown function is shown to be consistent and asymptotically distributed as well, though at a rate slower than root-N. Consistent estimators for the asymptotic variance–covariance matrices of both the parametric and unknown components are provided. The Monte Carlo simulation results suggest that the approach has some practical value.  相似文献   

5.
Linearly admissible estimators on linear functions of regression coefficient are studied in a singular linear model and balanced loss when the design matrix has not full column rank. The sufficient and necessary conditions for linear estimators to be admissible are obtained respectively in homogeneous and inhomogeneous classes.  相似文献   

6.
We study model selection and model averaging in semiparametric partially linear models with missing responses. An imputation method is used to estimate the linear regression coefficients and the nonparametric function. We show that the corresponding estimators of the linear regression coefficients are asymptotically normal. Then a focused information criterion and frequentist model average estimators are proposed and their theoretical properties are established. Simulation studies are performed to demonstrate the superiority of the proposed methods over the existing strategies in terms of mean squared error and coverage probability. Finally, the approach is applied to a real data case.  相似文献   

7.
In this paper, we investigate empirical likelihood (EL) inferences via weighted composite quantile regression for non linear models. Under regularity conditions, we establish that the proposed empirical log-likelihood ratio is asymptotically chi-squared, and then the confidence intervals for the regression coefficients are constructed. The proposed method avoids estimating the unknown error density function involved in the asymptotic covariance matrix of the estimators. Simulations suggest that the proposed EL procedure is more efficient and robust, and a real data analysis is used to illustrate the performance.  相似文献   

8.
Abstract

In this article, we consider a panel data partially linear regression model with fixed effect and non parametric time trend function. The data can be dependent cross individuals through linear regressor and error components. Unlike the methods using non parametric smoothing technique, a difference-based method is proposed to estimate linear regression coefficients of the model to avoid bandwidth selection. Here the difference technique is employed to eliminate the non parametric function effect, not the fixed effects, on linear regressor coefficient estimation totally. Therefore, a more efficient estimator for parametric part is anticipated, which is shown to be true by the simulation results. For the non parametric component, the polynomial spline technique is implemented. The asymptotic properties of estimators for parametric and non parametric parts are presented. We also show how to select informative ones from a number of covariates in the linear part by using smoothly clipped absolute deviation-penalized estimators on a difference-based least-squares objective function, and the resulting estimators perform asymptotically as well as the oracle procedure in terms of selecting the correct model.  相似文献   

9.
The commonly made assumption that all stochastic error terms in the linear regression model share the same variance (homoskedasticity) is oftentimes violated in practical applications, especially when they are based on cross-sectional data. As a precaution, a number of practitioners choose to base inference on the parameters that index the model on tests whose statistics employ asymptotically correct standard errors, i.e. standard errors that are asymptotically valid whether or not the errors are homoskedastic. In this paper, we use numerical integration methods to evaluate the finite-sample performance of tests based on different (alternative) heteroskedasticity-consistent standard errors. Emphasis is placed on a few recently proposed heteroskedasticity-consistent covariance matrix estimators. Overall, the results favor the HC4 and HC5 heteroskedasticity-robust standard errors. We also consider the use of restricted residuals when constructing asymptotically valid standard errors. Our results show that the only test that clearly benefits from such a strategy is the HC0 test.  相似文献   

10.
We consider the problem of estimating the mean of a multivariate distribution. As a general alternative to penalized least squares estimators, we consider minimax estimators for squared error over a restricted parameter space where the restriction is determined by the penalization term. For a quadratic penalty term, the minimax estimator among linear estimators can be found explicitly. It is shown that all symmetric linear smoothers with eigenvalues in the unit interval can be characterized as minimax linear estimators over a certain parameter space where the bias is bounded. The minimax linear estimator depends on smoothing parameters that must be estimated in practice. Using results in Kneip (1994), this can be done using Mallows' C L -statistic and the resulting adaptive estimator is now asymptotically minimax linear. The minimax estimator is compared to the penalized least squares estimator both in finite samples and asymptotically.  相似文献   

11.
In this article we study the method of nonparametric regression based on a transformation model, under which an unknown transformation of the survival time is nonlinearly, even more, nonparametrically, related to the covariates with various error distributions, which are parametrically specified with unknown parameters. Local linear approximations and locally weighted least squares are applied to obtain estimators for the effects of covariates with censored observations. We show that the estimators are consistent and asymptotically normal. This transformation model, coupled with local linear approximation techniques, provides many alternatives to the more general proportional hazards models with nonparametric covariates.  相似文献   

12.
Abstract

It is known that due to the existence of the nonparametric component, the usual estimators for the parametric component or its function in partially linear regression models are biased. Sometimes this bias is severe. To reduce the bias, we propose two jackknife estimators and compare them with the naive estimator. All three estimators are shown to be asymptotically equivalent and asymptotically normally distributed under some regularity conditions. However, through simulation we demonstrate that the jackknife estimators perform better than the naive estimator in terms of bias when the sample size is small to moderate. To make our results more useful, we also construct consistent estimators of the asymptotic variance, which are robust against heterogeneity of the error variances.  相似文献   

13.
In this paper, a generalized difference-based mixed Liu estimator in partially linear model is presented, when it is supposed that the regression parameter may be restricted to a subspace and compare the proposed estimators in the sense of matrix mean squared error criteria. Finally a simulation study is presented to show the performance of the estimators.  相似文献   

14.
In this article, based on the covariate balancing propensity score (CBPS), estimators for the regression coefficients and the population mean are obtained, when the responses of linear models are missing at random. It is proved that the proposed estimators are asymptotically normal. In simulation studies and real example, the proposed estimators show improved performance relative to usual augmented inverse probability weighted estimators.  相似文献   

15.
We explore a class of vector smoothers based on local polynomial regression for fitting nonparametric regression models which have a vector response. The asymptotic bias and variance for the class of estimators are derived for two different ways of representing the variance matrices within both a seemingly unrelated regression and a vector measurement error framework. We show that the asymptotic behaviour of the estimators is different in these four cases. In addition, the placement of the kernel weights in weighted least squares estimators is very important in the seeming unrelated regressions problem (to ensure that the estimator is asymptotically unbiased) but not in the vector measurement error model. It is shown that the component estimators are asymptotically uncorrelated in the seemingly unrelated regressions model but asymptotically correlated in the vector measurement error model. These new and interesting results extend our understanding of the problem of smoothing dependent data.  相似文献   

16.
In this article, we develop a local M-estimation for the conditional variance in heteroscedastic regression models. The estimator is based on the local linear smoothing technique and the M-estimation technique, and it is shown to be not only asymptotically equivalent to the local linear estimator but also robust. The consistency and asymptotic normality of the local M-estimator for the conditional variance in heteroscedastic regression models are obtained under mild conditions. The simulation studies demonstrate that the proposed estimators perform well in robustness.  相似文献   

17.
Rp of a linear regression model of the type Y = Xθ + ɛ, where X is the design matrix, Y the vector of the response variable and ɛ the random error vector that follows an AR(1) correlation structure. These estimators are asymptotically analyzed, by proving their strong consistency, asymptotic normality and asymptotic efficiency. In a simulation study, a better behaviour of the Mean Squared Error of the proposed estimator with respect to that of the generalized least squares estimators is observed. Received: November 16, 1998; revised version: May 10, 2000  相似文献   

18.
A class of trimmed linear conditional estimators based on regression quantiles for the linear regression model is introduced. This class serves as a robust analogue of non-robust linear unbiased estimators. Asymptotic analysis then shows that the trimmed least squares estimator based on regression quantiles ( Koenker and Bassett ( 1978 ) ) is the best in this estimator class in terms of asymptotic covariance matrices. The class of trimmed linear conditional estimators contains the Mallows-type bounded influence trimmed means ( see De Jongh et al ( 1988 ) ) and trimmed instrumental variables estimators. A large sample methodology based on trimmed instrumental variables estimator for confidence ellipsoids and hypothesis testing is also provided.  相似文献   

19.
This paper is concerned with model averaging procedure for varying-coefficient partially linear models with missing responses. The profile least-squares estimation process and inverse probability weighted method are employed to estimate regression coefficients of the partially restricted models, in which the propensity score is estimated by the covariate balancing propensity score method. The estimators of the linear parameters are shown to be asymptotically normal. Then we develop the focused information criterion, formulate the frequentist model averaging estimators and construct the corresponding confidence intervals. Some simulation studies are conducted to examine the finite sample performance of the proposed methods. We find that the covariate balancing propensity score improves the performance of the inverse probability weighted estimator. We also demonstrate the superiority of the proposed model averaging estimators over those of existing strategies in terms of mean squared error and coverage probability. Finally, our approach is further applied to a real data example.  相似文献   

20.
In the literature, there are many results on the consequences of mis-specified models for linear models with error in the response only, see, e.g., Seber(1977). There are also discussions of estimation for the model writh errors both in the response and in the predictor variables (called measurement error models; see, e.g., Fuller(1987)). In this paper, we consider the problem of model mis-specification for measurement error models. Only a few special cases have been tackled in the past (Edland, 1996; Carroll and Ruppert, 1996 and Lakshminarayanan Amp; Gunst, 1984); we deal with the situation here in some generality. Results have been obtained as follows: (a) When a model is under-fitted, the estimate of the variance of the measurement error will be asymptotically biased, as will the regression coefficients, and the asymptotic biases in the estimates of the regression coefficients will always exist for under-fitted models. Even orthogonality of the variables in the model will not make the biases vanish. (b)For over-fitting, the estimates of the variances of measurement errors and of the regression coefficients are asymptotically unbiased. However, the variance of the estimated regression coefficients will increase. Over-fitting will cause larger changes in the variances of the estimated parameters in measurement error models than in no measurement error models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号