首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exponentially weighted moving average (EWMA) chart is often designed assuming the process parameters are known. In practice, the parameters are rarely known and need to be estimated from Phase I samples. Different Phase I samples are used when practitioners construct their own control chart's limits, which leads to the “Phase I between-practitioners” variability in the in-control average run length (ARL) of control charts. The standard deviation of the ARL (SDARL) is a good alternative to quantify this variability in control charts. Based on the SDARL metric, the performance of the EWMA median chart with estimated parameters is investigated in this paper. Some recommendations are given based on the SDARL metric. The results show that the EWMA median chart requires a much larger amount of Phase I data in order to reduce the variation in the in-control ARL up to a reasonable level. Due to the limitation of the amount of the Phase I data, the suggested EWMA median chart is designed with the bootstrap method which provides a good balance between the in-control and out-of-control ARL values.  相似文献   

2.
Control charts designed for the properties of non conformities, also called p control charts, are powerful tools used for monitoring a performance of the fraction of non conforming units. Constructing a p chart is often based on the assumption that the in-control proportion of non conforming items (p 0) is known. In practice, the value of p 0 is rarely known and is frequently replaced by an estimate from an in-control reference sample in Phase I. This article investigates the effects of sample sizes in both Phase I and Phase II on the performance of p control charts. The conditional and marginal run length distributions are derived and the corresponding numerical studies are conducted. Moreover, the minimal sample sizes required in Phases I and II to ensure adequate statistical performance are proposed when p 0 = 0.1 and 0.005.  相似文献   

3.
ABSTRACT

In the design of CUSUM control charts, it is common to use charts, tables, or software to find an appropriate critical threshold (h). This article provides an approximate formula to calculate the threshold directly from prespecified values of the reference value (k) and the in-control average run length (ARL0). Formulas are also provided for choosing k and h from prespecified values of the in-control and out-of-control average run lengths.  相似文献   

4.
5.
Abstract

The performance of attributes control charts is usually evaluated under the assumption of known process parameters (i.e., the nominal proportion of non conforming units or the nominal average number of nonconformities). However, in practice, these process parameters are rarely known and have to be estimated from an in-control Phase I data set. The major contributions of this paper are (a) the derivation of the run length properties of the Run Rules Phase II c and np charts with estimated parameters, particularly focusing on the ARL, SDRL, and 0.05, 0.5, and 0.95 quantiles of the run length distribution; (b) the investigation of the number m of Phase I samples that is needed by these charts in order to obtain similar in-control ARLs to the known parameters case; and (c) the proposition of new specific chart parameters that allow these charts to have approximately the same in-control ARLs as the ones obtained in the known parameters case.  相似文献   

6.
This paper aims to derive explicit analytical solutions for Average Run Length (ARL) of CUSUM chart for the SARFIMA(P,D,Q)S process with exponential white noise. Measurement of performance was done with the ARL in terms of percentage error and CPU time. The results obtained from the explicit formulas were compared focusing on the performance using the numerical integral equation (NIE) method. Both methods had similarly excellent agreement with the percentage error at less than 0.25%. Meanwhile, the explicit formulas consumed less CPU time than the NIE method. It is clear that the explicit formulas are a good alternative in real applications.  相似文献   

7.
In this paper, we propose five types of copulas on the Hotelling's T2 control chart when observations are from exponential distribution and use the Monte Carlo simulation to compare the performance of the control chart, which is based on the Average Run Length (ARL) for each copula. Five types of copulas function for specifying dependence between random variables are used and measured by Kendall's tau. The results show that the copula approach can be fitted the observation and we can use copula as an option for application on Hotelling's T2 control chart.  相似文献   

8.
9.
A cumulative sum control chart for multivariate Poisson distribution (MP-CUSUM) is proposed. The MP-CUSUM chart is constructed based on log-likelihood ratios with in-control parameters, Θ0, and shifts to be detected quickly, Θ1. The average run length (ARL) values are obtained using a Markov Chain-based method. Numerical experiments show that the MP-CUSUM chart is effective in detecting parameter shifts in terms of ARL. The MP-CUSUM chart with smaller Θ1 is more sensitive than that with greater Θ1 to smaller shifts, but more insensitive to greater shifts. A comparison shows that the proposed MP-CUSUM chart outperforms an existing MP chart.  相似文献   

10.
The one-sided cumulative count of conforming (CCC) chart is a useful method to monitor nonconforming fraction in high-quality manufacturing processes. The nonconforming fraction parameter is assumed to be known when implementing a one-sided CCC chart. In this study, we investigated the impact of estimated nonconforming fraction, [pcirc] 0, in a one-sided CCC chart. The run length distribution is derived as well as the conditional probability of a false alarm rate (CFAR), conditional average run length (CARL) and its standard deviation (CSDRL). Simulation results are conducted to evaluate the effect of [pcirc] 0 in a one-sided CCC chart. The results show that values of CFAR, CARL and CSDRL are close to the nominal values for a large sample. The impact of estimation errors was also studied. We find that CFAR decreases for large [pcirc] 0. Thus, a large value of [pcirc] 0 is suggested for fewer false alarms.  相似文献   

11.
It is often encountered in the literature that the log-likelihood ratios (LLR) of some distributions (e.g. the student t distribution) are not monotonic. Existing charts for monitoring such processes may suffer from the fact that the average run length (ARL) curve is a discontinuous function of control limit. It implies that some pre-specified in-control (IC) ARLs of these charts may not be reached. To guarantee the false alarm rate of a control chart lower than the nominal level, a larger IC ARL is usually suggested in the literature. However, the large IC ARL may weaken the performance of a control chart when the process is out-of-control (OC), compared with a just right IC ARL. To overcome it, we adjust the LLR to be a monotonic one in this paper. Based on it, a multiple CUSUM chart is developed to detect range shifts in IC distribution. Theoretical result in this paper ensures the continuity of its ARL curve. Numerical results show our proposed chart performs well under the range shifts, especially under the large shifts. In the end, a real data example is utilized to illustrate our proposed chart.  相似文献   

12.
In this paper, we study the effect of estimating the vector of means and the variance–covariance matrix on the performance of two of the most widely used multivariate cumulative sum (CUSUM) control charts, the MCUSUM chart proposed by Crosier [Multivariate generalizations of cumulative sum quality-control schemes, Technometrics 30 (1988), pp. 291–303] and the MC1 chart proposed by Pignatiello and Runger [Comparisons of multivariate CUSUM charts, J. Qual. Technol. 22 (1990), pp. 173–186]. Using simulation, we investigate and compare the in-control and out-of-control performances of the competing charts in terms of the average run length measure. The in-control and out-of-control performances of the competing charts deteriorate significantly if the estimated parameters are used with control limits intended for known parameters, especially when only a few Phase I samples are used to estimate the parameters. We recommend the use of the MC1 chart over that of the MCUSUM chart if the parameters are estimated from a small number of Phase I samples.  相似文献   

13.
This article analyses the performance of a one-sided cumulative sum (CUSUM) chart that is initialized using a random starting point following the natural or intrinsic probability distribution of the CUSUM statistic. By definition, this probability distribution remains stable as the chart is used. The probability that the chart starts at zero according to this intrinsic distribution is always smaller than one, which confers on the chart a fast initial response feature. The article provides a fast and accurate algorithm to compute the in-control and out-of-control average run lengths and run-length probability distributions for one-sided CUSUM charts initialized using this random intrinsic fast initial response (RIFIR) scheme. The algorithm also computes the intrinsic distribution of the CUSUM statistic and random samples extracted from this distribution. Most importantly, no matter how the chart was initialized, if no level shifts and no alarms have occurred before time τ?>?0, the distribution of the run length remaining after τ is provided by this algorithm very accurately, provided that τ is not too small.  相似文献   

14.
In this article we consider the modified Shewhart control chart for ARCH processes and introduce it for threshold ARCH (TARCH) ones. For both charts, we determine bounds for the distribution of the in-control run length (RL) and, consequently, for its average (ARL), both depending only on the distribution of the generating white noise, the model parameters and the critical value. For the ARCH model, we compare our bounds with others available in literature and show how they improve the existing ones. We present a simulation study to assess the quality of the bounds calculated for the ARL.  相似文献   

15.
The quality characteristics, which are known as attributes, cannot be conveniently and numerically represented. Generally, the attribute data can be regarded as the fuzzy data, which are ubiquitous in the manufacturing process and cannot be measured precisely and often be collected by visual inspection. In this paper, we construct a p control chart for monitoring the fraction of nonconforming items in the process in which fuzzy sample data are collected from the manufacturing process. The resolution identity – a well-known theorem in the fuzzy set theory – is invoked to construct the control limits of fuzzy-p control charts using fuzzy data. In order to determine whether the plotted imprecise fraction of nonconforming items is within the fuzzy lower and upper control limits, we also propose a ranking method for a set of fuzzy numbers. Using the fuzzy-p control charts and the proposed acceptability function to classify the manufacturing process allows the decision-maker to make linguistic decisions such as rather in control or rather out of control. A practical example is provided to describe the applicability of the fuzzy set theory to a conventional p control chart.  相似文献   

16.
The shape features of run chart patterns of the most recent m observations arising from stable and unstable processes are different. Using this fact, a new monitoring statistic is defined whose value for given m depends on the pattern parameters but not on the process parameters. A control chart for this statistic for given m, therefore, will be globally applicable to normal processes. The simulation study reveals that the proposed statistic approximately follows normal distribution. The performances of the globally applicable control chart in terms of average run lengths (ARLs) are evaluated and compared with the X chart. Both in-control ARL and out-of-control ARLs with respect to different abnormal process conditions are found to be larger than the X chart. However, the proposed concept is promising because it can eliminate the burden of designing separate control charts for different quality characteristics or processes in a manufacturing set-up.  相似文献   

17.
Gadre and Rattihalli [Gadre, M.P. and Rattihalli, R.N., 2005a, A unit and group runs based chart to identify increases in fraction nonconforming. Journal of Quality Technology, 37, 199–209.] proposed a control chart called the unit and group runs (UGR) control chart to identify increases in fraction non-conforming. In this article, the concept of UGR chart is extended to the multi-attribute case to detect the process deterioration. It is illustrated that in multi-attribute cases also, the UGR chart gives a remarkable reduction in out-of-control average time to signal when compared with the multi-attribute np chart, the multi-attribute synthetic chart and the multi-attribute group runs chart recently developed by Gadre and Rattihalli [Gadre, M.P. and Rattihalli, R.N., 2005b, Some group inspection based multi-attribute control charts. Economic Quality Control, 20, 191–204.]. The steady state performance of the multi-attribute UGR chart is also excellent. The procedure of identifying the attributes causing signal is also described and illustrated.  相似文献   

18.
The T 2 control chart is widely adopted in multivariate statistical process control. However, when dealing with asymmetrical or multimodal distributions using the traditional T 2 control chart, some points with relatively high occurrence possibility might be excluded, while some points with relatively low occurrence possibility might be accepted. Motived by the thought of the highest posterior density credible region, we develop a control chart based on the highest possibility region to solve this problem. It is shown that the proposed multivariate control chart will not only meet the false alarm requirement, but also ensure that all the in-control points are with relatively high occurrence possibility. The advantages and effectiveness of the proposed control chart are demonstrated by some numerical examples in the end.  相似文献   

19.
Consider an ergodic Markov chain X(t) in continuous time with an infinitesimal matrix Q = (qij) defined on a finite state space {0, 1,…, N}. In this note, we prove that if X(t) is skip-free positive (negative, respectively), i.e., qij, = 0 for j > i+ 1 (i > j+ 1), then the transition probability pij(t) = Pr[X(t)=j | X(0) =i] can be represented as a linear combination of p0N(t) (p(m)(N0)(t)), 0 ≤ m ≤N, where f(m)(t) denotes the mth derivative of a function f(t) with f(0)(t) =f(t). If X(t) is a birth-death process, then pij(t) is represented as a linear combination of p0N(m)(t), 0 ≤mN - |i-j|.  相似文献   

20.
A traffic accident can be considered as an example of the attribute events, and the number of the injured in each accident is called the event size. Some control charts have been developed for monitoring either the time interval (T) between the occurrences of an event or the event size (C) in each occurrence. This article studies the statistical monitoring of the attribute events in which T and C are monitored simultaneously and C is an integer. Essentially, it integrates a T chart and a C chart, and is therefore referred to as a T&C scheme. Our studies show that the new chart is more effective than an individual T chart or C chart for detecting the out-of-control status of the event, in particular for detecting downward shifts (sparse occurrence and/or small size). Another desirable feature of the T&C scheme is that its detection effectiveness is more invariable against different types of shifts (i.e. T shift, C shift and joint shift in T&C) compared with an individual T or C chart. The improvement in performance is achieved due to the simultaneous monitoring of T and C. The T&C scheme can be applied in manufacturing systems and especially in non-manufacturing sectors (e.g. supply chain management, health care industry, disaster management and security control).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号