首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In several cases, count data often have excessive number of zero outcomes. This zero-inflated phenomenon is a specific cause of overdispersion, and zero-inflated Poisson regression model (ZIP) has been proposed for accommodating zero-inflated data. However, if the data continue to suggest additional overdispersion, zero-inflated negative binomial (ZINB) and zero-inflated generalized Poisson (ZIGP) regression models have been considered as alternatives. This study proposes the score test for testing ZIP regression model against ZIGP alternatives and proves that it is equal to the score test for testing ZIP regression model against ZINB alternatives. The advantage of using the score test over other alternative tests such as likelihood ratio and Wald is that the score test can be used to determine whether a more complex model is appropriate without fitting the more complex model. Applications of the proposed score test on several datasets are also illustrated.  相似文献   

2.
In recent years, there has been considerable interest in regression models based on zero-inflated distributions. These models are commonly encountered in many disciplines, such as medicine, public health, and environmental sciences, among others. The zero-inflated Poisson (ZIP) model has been typically considered for these types of problems. However, the ZIP model can fail if the non-zero counts are overdispersed in relation to the Poisson distribution, hence the zero-inflated negative binomial (ZINB) model may be more appropriate. In this paper, we present a Bayesian approach for fitting the ZINB regression model. This model considers that an observed zero may come from a point mass distribution at zero or from the negative binomial model. The likelihood function is utilized to compute not only some Bayesian model selection measures, but also to develop Bayesian case-deletion influence diagnostics based on q-divergence measures. The approach can be easily implemented using standard Bayesian software, such as WinBUGS. The performance of the proposed method is evaluated with a simulation study. Further, a real data set is analyzed, where we show that ZINB regression models seems to fit the data better than the Poisson counterpart.  相似文献   

3.
The zero-inflated regression models such as zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB) or zero-inflated generalized Poisson (ZIGP) regression models can model the count data with excess zeros. The ZINB model can handle over-dispersed and the ZIGP model can handle the over or under-dispersed count data with excess zeros as well. Moreover, the count data may be correlated because of data collection procedure or special study design. The clustered sampling approach is one of the examples in which the correlation among subjects could be defined. In such situations, a marginal model using generalized estimating equation (GEE) approach can incorporate these correlations and lead up to the relationships at the population level. In this study, the GEE-based zero-inflated generalized Poisson regression model was proposed to fit over and under-dispersed clustered count data with excess zeros.  相似文献   

4.
The zero-inflated negative binomial (ZINB) model is used to account for commonly occurring overdispersion detected in data that are initially analyzed under the zero-inflated Poisson (ZIP) model. Tests for overdispersion (Wald test, likelihood ratio test [LRT], and score test) based on ZINB model for use in ZIP regression models have been developed. Due to similarity to the ZINB model, we consider the zero-inflated generalized Poisson (ZIGP) model as an alternate model for overdispersed zero-inflated count data. The score test has an advantage over the LRT and the Wald test in that the score test only requires that the parameter of interest be estimated under the null hypothesis. This paper proposes score tests for overdispersion based on the ZIGP model and illustrates that the derived score statistics are exactly the same as the score statistics under the ZINB model. A simulation study indicates the proposed score statistics are preferred to other tests for higher empirical power. In practice, based on the approximate mean–variance relationship in the data, the ZINB or ZIGP model can be considered, and a formal score test based on asymptotic standard normal distribution can be employed for assessing overdispersion in the ZIP model. We provide an example to illustrate the procedures for data analysis.  相似文献   

5.
Zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) models are recommended for handling excessive zeros in count data. For various reasons, researchers may not address zero inflation. This paper helps educate researchers on (1) the importance of accounting for zero inflation and (2) the consequences of misspecifying the statistical model. Using simulations, we found that when the zero inflation in the data was ignored, estimation was poor and statistically significant findings were missed. When overdispersion within the zero-inflated data was ignored, poor estimation and inflated Type I errors resulted. Recommendations on when to use the ZINB and ZIP models are provided. In an illustration using a two-step model selection procedure (likelihood ratio test and the Vuong test), the ZIP model was correctly identified only when the distributions had moderate means and sample sizes and did not correctly identify the ZINB model or the zero inflation in the ZIP and ZINB distributions.  相似文献   

6.
Count data with excess zeros are common in many biomedical and public health applications. The zero-inflated Poisson (ZIP) regression model has been widely used in practice to analyze such data. In this paper, we extend the classical ZIP regression framework to model count time series with excess zeros. A Markov regression model is presented and developed, and the partial likelihood is employed for statistical inference. Partial likelihood inference has been successfully applied in modeling time series where the conditional distribution of the response lies within the exponential family. Extending this approach to ZIP time series poses methodological and theoretical challenges, since the ZIP distribution is a mixture and therefore lies outside the exponential family. In the partial likelihood framework, we develop an EM algorithm to compute the maximum partial likelihood estimator (MPLE). We establish the asymptotic theory of the MPLE under mild regularity conditions and investigate its finite sample behavior in a simulation study. The performances of different partial-likelihood based model selection criteria are compared in the presence of model misspecification. Finally, we present an epidemiological application to illustrate the proposed methodology.  相似文献   

7.
The objective of this study is providing a comparative assessment for researchers to deal with the challenges of analyzing count data and examining the factors associated with daily cigarette consumption among the young people in Turkey. We fitted Poisson (P), negative binomial (NB), zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), Poisson hurdle (PH) and negative binomial hurdle (NBH) regressions to cigarette consumption count data by using the 2014 Turkey Health Survey. Our results showed that the ZINB and NBH models should be preferred. We also found that, gender, employment and tobacco use at home are more effective factors for smokers and nonsmokers in the 15–24 age group in Turkey.  相似文献   

8.
Count data with structural zeros are common in public health applications. There are considerable researches focusing on zero-inflated models such as zero-inflated Poisson (ZIP) and zero-inflated Negative Binomial (ZINB) models for such zero-inflated count data when used as response variable. However, when such variables are used as predictors, the difference between structural and random zeros is often ignored and may result in biased estimates. One remedy is to include an indicator of the structural zero in the model as a predictor if observed. However, structural zeros are often not observed in practice, in which case no statistical method is available to address the bias issue. This paper is aimed to fill this methodological gap by developing parametric methods to model zero-inflated count data when used as predictors based on the maximum likelihood approach. The response variable can be any type of data including continuous, binary, count or even zero-inflated count responses. Simulation studies are performed to assess the numerical performance of this new approach when sample size is small to moderate. A real data example is also used to demonstrate the application of this method.  相似文献   

9.
Count data with excess zeros are widely encountered in the fields of biomedical, medical, public health and social survey, etc. Zero-inflated Poisson (ZIP) regression models with mixed effects are useful tools for analyzing such data, in which covariates are usually incorporated in the model to explain inter-subject variation and normal distribution is assumed for both random effects and random errors. However, in many practical applications, such assumptions may be violated as the data often exhibit skewness and some covariates may be measured with measurement errors. In this paper, we deal with these issues simultaneously by developing a Bayesian joint hierarchical modeling approach. Specifically, by treating intercepts and slopes in logistic and Poisson regression as random, a flexible two-level ZIP regression model is proposed, where a covariate process with measurement errors is established and a skew-t-distribution is considered for both random errors and random effects. Under the Bayesian framework, model selection is carried out using deviance information criterion (DIC) and a goodness-of-fit statistics is also developed for assessing the plausibility of the posited model. The main advantage of our method is that it allows for more robustness and correctness for investigating heterogeneity from different levels, while accommodating the skewness and measurement errors simultaneously. An application to Shanghai Youth Fitness Survey is used as an illustrate example. Through this real example, it is showed that our approach is of interest and usefulness for applications.  相似文献   

10.
Lesion count observed on brain magnetic resonance imaging scan is a common end point in phase 2 clinical trials evaluating therapeutic treatment in relapsing remitting multiple sclerosis (MS). This paper compares the performances of Poisson, zero‐inflated poisson (ZIP), negative binomial (NB), and zero‐inflated NB (ZINB) mixed‐effects regression models in fitting lesion count data in a clinical trial evaluating the efficacy and safety of fingolimod in comparison with placebo, in MS. The NB and ZINB models prove to be superior to the Poisson and ZIP models. We discuss the advantages and limitations of zero‐inflated models in the context of MS treatment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
When a count data set has excessive zero counts, nonzero counts are overdispersed, and the effect of a continuous covariate might be nonlinear, for analysis a semiparametric zero-inflated negative binomial (ZINB) regression model is proposed. The unspecified smooth functional form for the continuous covariate effect is approximated by a cubic spline. The semiparametric ZINB regression model is fitted by maximizing the likelihood function. The likelihood ratio procedure is used to evaluate the adequacy of a postulated parametric functional form for the continuous covariate effect. An extensive simulation study is conducted to assess the finite-sample performance of the proposed test. The practicality of the proposed methodology is demonstrated with data of a motorcycle survey of traffic regulations conducted in 2007 in Taiwan by the Ministry of Transportation and Communication.  相似文献   

12.
In this paper, we briefly overview different zero-inflated probability distributions. We compare the performance of the estimates of Poisson, Generalized Poisson, ZIP, ZIGP and ZINB models through Mean square error (MSE), bias and Standard error (SE) when the samples are generated from ZIP distribution. We propose a new estimator referred to as probability estimator (PE) of inflation parameter of ZIP distribution based on moment estimator (ME) of the mean parameter and compare its performance with ME and maximum likelihood estimator (MLE) through a simulation study. We use the PE along with ME and MLE to fit ZIP distribution to various zero-inflated datasets and observe that the results do not differ significantly. We recommend using PE in place of MLE since it is easy to calculate and the simulation study in this paper demonstrates that the PE performs as good as MLE irrespective of the sample size.  相似文献   

13.
The zero-inflated Poisson (ZIP) distribution is widely used for modeling a count data set when the frequency of zeros is higher than the one expected under the Poisson distribution. There are many methods for making inferences for the inflation parameter in the ZIP models, e.g. the methods for testing Poisson (the inflation parameter is zero) versus ZIP distribution (the inflation parameter is positive). Most of these methods are based on the maximum likelihood estimators which do not have an explicit expression. However, the estimators which are obtained by the method of moments are powerful enough, easy to obtain and implement. In this paper, we propose an approach based on the method of moments for making inferences about the inflation parameter in the ZIP distribution. Our method is also compared to some recent methods via a simulation study and it is illustrated by an example.  相似文献   

14.
Count data often display excessive number of zero outcomes than are expected in the Poisson regression model. The zero-inflated Poisson regression model has been suggested to handle zero-inflated data, whereas the zero-inflated negative binomial (ZINB) regression model has been fitted for zero-inflated data with additional overdispersion. For bivariate and zero-inflated cases, several regression models such as the bivariate zero-inflated Poisson (BZIP) and bivariate zero-inflated negative binomial (BZINB) have been considered. This paper introduces several forms of nested BZINB regression model which can be fitted to bivariate and zero-inflated count data. The mean–variance approach is used for comparing the BZIP and our forms of BZINB regression model in this study. A similar approach was also used by past researchers for defining several negative binomial and zero-inflated negative binomial regression models based on the appearance of linear and quadratic terms of the variance function. The nested BZINB regression models proposed in this study have several advantages; the likelihood ratio tests can be performed for choosing the best model, the models have flexible forms of marginal mean–variance relationship, the models can be fitted to bivariate zero-inflated count data with positive or negative correlations, and the models allow additional overdispersion of the two dependent variables.  相似文献   

15.
Count responses with structural zeros are very common in medical and psychosocial research, especially in alcohol and HIV research, and the zero-inflated Poisson (ZIP) and zero-inflated negative binomial models are widely used for modeling such outcomes. However, as alcohol drinking outcomes such as days of drinkings are counts within a given period, their distributions are bounded above by an upper limit (total days in the period) and thus inherently follow a binomial or zero-inflated binomial (ZIB) distribution, rather than a Poisson or ZIP distribution, in the presence of structural zeros. In this paper, we develop a new semiparametric approach for modeling ZIB-like count responses for cross-sectional as well as longitudinal data. We illustrate this approach with both simulated and real study data.  相似文献   

16.
While excess zeros are often thought to cause data over-dispersion (i.e. when the variance exceeds the mean), this implication is not absolute. One should instead consider a flexible class of distributions that can address data dispersion along with excess zeros. This work develops a zero-inflated sum-of-Conway-Maxwell-Poissons (ZISCMP) regression as a flexible analysis tool to model count data that express significant data dispersion and contain excess zeros. This class of models contains several special case zero-inflated regressions, including zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), zero-inflated binomial (ZIB), and the zero-inflated Conway-Maxwell-Poisson (ZICMP). Through simulated and real data examples, we demonstrate class flexibility and usefulness. We further utilize it to analyze shark species data from Australia's Great Barrier Reef to assess the environmental impact of human action on the number of various species of sharks.  相似文献   

17.
In modeling defect counts collected from an established manufacturing processes, there are usually a relatively large number of zeros (non-defects). The commonly used models such as Poisson or Geometric distributions can underestimate the zero-defect probability and hence make it difficult to identify significant covariate effects to improve production quality. This article introduces a flexible class of zero inflated models which includes other familiar models such as the Zero Inflated Poisson (ZIP) models, as special cases. A Bayesian estimation method is developed as an alternative to traditionally used maximum likelihood based methods to analyze such data. Simulation studies show that the proposed method has better finite sample performance than the classical method with tighter interval estimates and better coverage probabilities. A real-life data set is analyzed to illustrate the practicability of the proposed method easily implemented using WinBUGS.  相似文献   

18.
Regression analyses are commonly performed with doubly limited continuous dependent variables; for instance, when modeling the behavior of rates, proportions and income concentration indices. Several models are available in the literature for use with such variables, one of them being the unit gamma regression model. In all such models, parameter estimation is typically performed using the maximum likelihood method and testing inferences on the model''s parameters are usually based on the likelihood ratio test. Such a test can, however, deliver quite imprecise inferences when the sample size is small. In this paper, we propose two modified likelihood ratio test statistics for use with the unit gamma regressions that deliver much more accurate inferences when the number of data points in small. Numerical (i.e. simulation) evidence is presented for both fixed dispersion and varying dispersion models, and also for tests that involve nonnested models. We also present and discuss two empirical applications.  相似文献   

19.
We consider regression modeling of survival data subject to right censoring when the full effect of some covariates (e.g. treatment) may be delayed. Several models are proposed, and methods for computing the maximum likelihood estimates of the parameters are described. Consistency and asymptotic normality properties of the estimators are derived. Some numerical examples are used to illustrate the implementation of the modeling and estimation procedures. Finally we apply the theory to interim data from a large scale randomized clinical trial for the prevention of skin cancer.  相似文献   

20.
The binary logistic regression is a widely used statistical method when the dependent variable has two categories. In most of the situations of logistic regression, independent variables are collinear which is called the multicollinearity problem. It is known that multicollinearity affects the variance of maximum likelihood estimator (MLE) negatively. Therefore, this article introduces new shrinkage parameters for the Liu-type estimators in the Liu (2003) in the logistic regression model defined by Huang (2012) in order to decrease the variance and overcome the problem of multicollinearity. A Monte Carlo study is designed to show the goodness of the proposed estimators over MLE in the sense of mean squared error (MSE) and mean absolute error (MAE). Moreover, a real data case is given to demonstrate the advantages of the new shrinkage parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号