首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 695 毫秒
1.
In this paper the family ofφ-divergence estimators for loglinear models with linear constraints and multinomial sampling is studied. This family is an extension of the maximum likelihood estimator studied by Haber and Brown (1986). A simulation study is presented and some alternative estimators to the maximum likelihood are obtained. This work was parcially supported by Grant DGES PB2003-892  相似文献   

2.
Maximum likelihood, goodness-of-fit, and symmetric percentile estimators of the power transformation parameterp, are considered. The comparative robustness of each estimation procedure is evaluated when the transformed data can be made symmetric, but may not necessarily be normal. Seven types of symmetric distributions are considered as well as four contaminated normal distributions over a range of six p values for samples of size 25, 50, and 100. The results indicate that the maximum likelihood estimator was slightly better than the goodness-of-fit estimator, but both were greatly superior to the percentile estimator. In general, the procedures were robust to distributional symmetric departures from normality, but increasing kurtosis caused appreciable increases in variation for estimated p values. The variability of p was found to decrease more than exponentially with decreases in the underlying normal distribution coefficient of variation. The standard likelihood ratio confidence interval procedure was found not to be generally useful.  相似文献   

3.
Three estimators of the proportion in a tail of the normal distribution are compared using the criteria of mean squared error and mean absolute error. The estimators that we compare are the maximum likelihood estimator, the minimum variance unbiased estimator, and an intuitive estimator that is frequently used in practice. The intuitive estimator is similar to the MLE but uses the usual unbiased estimator of σ2 rather than the MLE of σ2. We show that the intuitive estimator has low efficiency, and for this reason it is not recommended. For very smallp and for largep the MVUE has the highest efficiency. The MLE is best for moderate values ofp.  相似文献   

4.
The use of Mathematica in deriving mean likelihood estimators is discussed. Comparisons are made between the mean likelihood estimator, the maximum likelihood estimator, and the Bayes estimator based on a Jeffrey's noninformative prior. These estimators are compared using the mean-square error criterion and Pitman measure of closeness. In some cases it is possible, using Mathematica, to derive exact results for these criteria. Using Mathematica, simulation comparisons among the criteria can be made for any model for which we can readily obtain estimators.In the binomial and exponential distribution cases, these criteria are evaluated exactly. In the first-order moving-average model, analytical comparisons are possible only for n = 2. In general, we find that for the binomial distribution and the first-order moving-average time series model the mean likelihood estimator outperforms the maximum likelihood estimator and the Bayes estimator with a Jeffrey's noninformative prior. Mathematica was used for symbolic and numeric computations as well as for the graphical display of results. A Mathematica notebook which provides the Mathematica code used in this article is available: http://www.stats.uwo.ca/mcleod/epubs/mele. Our article concludes with our opinions and criticisms of the relative merits of some of the popular computing environments for statistics researchers.  相似文献   

5.
The count data model studied in the paper extends the Poisson model by al-lowing for overdispersion and serial correlation. Alternative approaches to esti-mate nuisance parameters, required for the correction of the Poisson maximum likelihood covariance matrix estimator and for a quasi-likelihood estimator, are studied. The estimators are evaluated by finite sample Monte Carlo experi-mentation. It is found that the Poisson maximum likelihood estimator with corrected covariance matrix estimators provide reliable inferences for longer time series. Overdispersion test statistics are wellbehaved, while conventional portmanteau statistics for white noise have too large sizes. Two empirical illustrations are included.  相似文献   

6.
Estimation of the correlation coefficient between two variates (p) in the presence of correlated observations from a bivar iate normal population is considered The estimated maximum likelihood estimator (EMLE), an estimate based on the maximum likelihood estimator (MLE), is proposed and studied for the estimation of p For the large sample case , approximate expressions foi the variance and the bias of the Pearson estimate of the correlation coefficient are derived. These expressions suggests that the Pearson’s estimator possesses high mean square error (MSE) in estimating ρ in comparison to the MLE The MSE is particularly high when the observations within clusters aie highly correlated. The Pearson’s estimate, the MLE, and the EMLE aie evaluated in a simulation study This study shows that the proposed EMLE pefoims bettei than the Pearson’s correlation coefficient except when the number of clusters is small.  相似文献   

7.
A simple estimator is proposed for the dependence parameter for the Klotz model of Bernoulli trials with Markov dependence and it is compared with the ratio estimator given by Price and the approximate maximum likelihood estimator given by Klotz. The proposed estimator is shown to have considerably smaller bias than the other two estimators with comparable mean squared errors, and has all the large sample optimal properties that the other two estimators have.  相似文献   

8.
ABSTRACT

In this paper, we shall study a homogeneous ergodic, finite state, Markov chain with unknown transition probability matrix. Starting from the well known maximum likelihood estimator of transition probability matrix, we define estimators of reliability and its measurements. Our aim is to show that these estimators are uniformly strongly consistent and converge in distribution to normal random variables. The construction of the confidence intervals for availability, reliability, and failure rates are also given. Finally we shall give a numerical example for illustration and comparing our results with the usual empirical estimator results.  相似文献   

9.
Four strategies for bias correction of the maximum likelihood estimator of the parameters in the Type I generalized logistic distribution are studied. First, we consider an analytic bias-corrected estimator, which is obtained by deriving an analytic expression for the bias to order n ?1; second, a method based on modifying the likelihood equations; third, we consider the jackknife bias-corrected estimator; and fourth, we consider two bootstrap bias-corrected estimators. All bias correction estimators are compared by simulation. Finally, an example with a real data set is also presented.  相似文献   

10.
Population size estimation with discrete or nonparametric mixture models is considered, and reliable ways of construction of the nonparametric mixture model estimator are reviewed and set into perspective. Construction of the maximum likelihood estimator of the mixing distribution is done for any number of components up to the global nonparametric maximum likelihood bound using the EM algorithm. In addition, the estimators of Chao and Zelterman are considered with some generalisations of Zelterman’s estimator. All computations are done with CAMCR, a special software developed for population size estimation with mixture models. Several examples and data sets are discussed and the estimators illustrated. Problems using the mixture model-based estimators are highlighted.  相似文献   

11.
Abstract

In this paper, we show that Y can be introduced into data sharpening to produce non-parametric regression estimators that enjoy high orders of bias reduction. Compared with those in existing literature, the proposed data-sharpening estimator has advantages including simplicity of the estimators, good performance of expectation and variance, and mild assumptions. We generalize this estimator to dependent errors. Finally, we conduct a limited simulation to illustrate that the proposed estimator performs better than existing ones.  相似文献   

12.
In this paper, a new estimator combined estimator (CE) is proposed for estimating the finite population mean ¯ Y N in simple random sampling assuming a long-tailed symmetric super-population model. The efficiency and robustness properties of the CE is compared with the widely used and well-known estimators of the finite population mean ¯ Y N by Monte Carlo simulation. The parameter estimators considered in this study are the classical least squares estimator, trimmed mean, winsorized mean, trimmed L-mean, modified maximum-likelihood estimator, Huber estimator (W24) and the non-parametric Hodges–Lehmann estimator. The mean square error criteria are used to compare the performance of the estimators. We show that the CE is overall more efficient than the other estimators. The CE is also shown to be more robust for estimating the finite population mean ¯ Y N , since it is insensitive to outliers and to misspecification of the distribution. We give a real life example.  相似文献   

13.
Suppose the multinomial parameters pr (θ) are functions of a real valued parameter 0, r = 1,2, …, k. A minimum discrepancy (m.d.) estimator θ of θ is defined as one which minimises the discrepancy function D = Σ nrf(pr/nr), for a suitable function f where nr is the relative frequency in r-th cell, r = 1,2, …, k. All the usual estimators like maximum likelihood (m. l), minimum chi-square (m. c. s.)., etc. are m.d. estimators. All m.d. estimators have the same asymptotic (first order) efficiency. They are compared on the basis of their deficiencies, a concept recently introduced by Hodges and Lehmann [2]. The expression for least deficiency at any θ is derived. It is shown that in general uniformly least deficient estimators do not exist. Necessary and sufficient conditions on pr (0) for m. t. and m. c. s. estimators to be uniformly least deficient are obtained.  相似文献   

14.
This paper considers the problem of estimating the probability P = Pr(X < Y) when X and Y are independent exponential random variables with unequal scale parameters and a common location parameter. Uniformly minimum variance unbiased estimator of P is obtained. The asymptotic distribution of the maximum likelihood estimator is obtained and then the asymptotic equivalence of the two estimators is established. Performance of the two estimators for moderate sample sizes is studied by Monte Carlo simulation. An approximate interval estimator is also obtained.  相似文献   

15.
In the context of estimating regression coefficients of an ill-conditioned binary logistic regression model, we develop a new biased estimator having two parameters for estimating the regression vector parameter β when it is subjected to lie in the linear subspace restriction Hβ = h. The matrix mean squared error and mean squared error (MSE) functions of these newly defined estimators are derived. Moreover, a method to choose the two parameters is proposed. Then, the performance of the proposed estimator is compared to that of the restricted maximum likelihood estimator and some other existing estimators in the sense of MSE via a Monte Carlo simulation study. According to the simulation results, the performance of the estimators depends on the sample size, number of explanatory variables, and degree of correlation. The superiority region of our proposed estimator is identified based on the biasing parameters, numerically. It is concluded that the new estimator is superior to the others in most of the situations considered and it is recommended to the researchers.  相似文献   

16.
ABSTRACT

The paper deals with Bayes estimation of the exponentiated Weibull shape parameters under linex loss function when independent non-informative type of priors are available for the parameters. Generalized maximum likelihood estimators have also been obtained. Performances of the proposed Bayes estimator, generalized maximum likelihood estimators, posterior mean (i.e., Bayes estimator under squared error loss function) and maximum likelihood estimators have been studied on the basis of their risks under linex loss function. The comparison is based on a simulation study because the expressions for risk functions of these estimators cannot be obtained in nice closed forms.  相似文献   

17.
Based on progressively Type-II censored samples, this article deals with inference for the stress-strength reliability R = P(Y < X) when X and Y are two independent two-parameter bathtub-shape lifetime distributions with different scale parameters, but having the same shape parameter. Different methods for estimating the reliability are applied. The maximum likelihood estimate of R is derived. Also, its asymptotic distribution is used to construct an asymptotic confidence interval for R. Assuming that the shape parameter is known, the maximum likelihood estimator of R is obtained. Based on the exact distribution of the maximum likelihood estimator of R an exact confidence interval of that has been obtained. The uniformly minimum variance unbiased estimator are calculated for R. Bayes estimate of R and the associated credible interval are also got under the assumption of independent gamma priors. Monte Carlo simulations are performed to compare the performances of the proposed estimators. One data analysis has been performed for illustrative purpose. Finally, we will generalize this distribution to the proportional hazard family with two parameters and derive various estimators in this family.  相似文献   

18.
Fisher's A statistic, often called the adjusted R2 statistic, is shown to be a close approximation to the maximum likelihood estimate of the multiple correlation coefficient, p2, based on the marginal distribution of R2. Expansions for the estimate are obtained. The same methods lead to maximum marginal likelihood estimators for the noncentrality parameters for noncentral X2 and F.  相似文献   

19.
This article develops the theoretical framework needed to study the multinomial regression model for complex sample design with pseudo-minimum phi-divergence estimators. The numerical example and the simulation study propose new estimators for the parameter of the logistic regression with overdispersed multinomial distributions for the response variables, the pseudo-minimum Cressie–Read divergence estimators, as well as new estimators for the intra-cluster correlation coefficient. The simulation study shows that the Binder’s method for the intra-cluster correlation coefficient exhibits an excellent performance when the pseudo-minimum Cressie–Read divergence estimator, with \(\lambda =\frac{2}{3}\), is plugged.  相似文献   

20.
The non-Gaussian maximum likelihood estimator is frequently used in GARCH models with the intention of capturing heavy-tailed returns. However, unless the parametric likelihood family contains the true likelihood, the estimator is inconsistent due to density misspecification. To correct this bias, we identify an unknown scale parameter ηf that is critical to the identification for consistency and propose a three-step quasi-maximum likelihood procedure with non-Gaussian likelihood functions. This novel approach is consistent and asymptotically normal under weak moment conditions. Moreover, it achieves better efficiency than the Gaussian alternative, particularly when the innovation error has heavy tails. We also summarize and compare the values of the scale parameter and the asymptotic efficiency for estimators based on different choices of likelihood functions with an increasing level of heaviness in the innovation tails. Numerical studies confirm the advantages of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号