首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This paper considers the problem of selecting a robust threshold of wavelet shrinkage. Previous approaches reported in literature to handle the presence of outliers mainly focus on developing a robust procedure for a given threshold; this is related to solving a nontrivial optimization problem. The drawback of this approach is that the selection of a robust threshold, which is crucial for the resulting fit is ignored. This paper points out that the best fit can be achieved by a robust wavelet shrinkage with a robust threshold. We propose data-driven selection methods for a robust threshold. These approaches are based on a coupling of classical wavelet thresholding rules with pseudo data. The concept of pseudo data has influenced the implementation of the proposed methods, and provides a fast and efficient algorithm. Results from a simulation study and a real example demonstrate the promising empirical properties of the proposed approaches.  相似文献   

2.
Classical nondecimated wavelet transforms are attractive for many applications. When the data comes from complex or irregular designs, the use of second generation wavelets in nonparametric regression has proved superior to that of classical wavelets. However, the construction of a nondecimated second generation wavelet transform is not obvious. In this paper we propose a new ‘nondecimated’ lifting transform, based on the lifting algorithm which removes one coefficient at a time, and explore its behavior. Our approach also allows for embedding adaptivity in the transform, i.e. wavelet functions can be constructed such that their smoothness adjusts to the local properties of the signal. We address the problem of nonparametric regression and propose an (averaged) estimator obtained by using our nondecimated lifting technique teamed with empirical Bayes shrinkage. Simulations show that our proposed method has higher performance than competing techniques able to work on irregular data. Our construction also opens avenues for generating a ‘best’ representation, which we shall explore.  相似文献   

3.
We can use wavelet shrinkage to estimate a possibly multivariate regression function g under the general regression setup, y = g + ε. We propose an enhanced wavelet-based denoising methodology based on Bayesian adaptive multiresolution shrinkage, an effective Bayesian shrinkage rule in addition to the semi-supervised learning mechanism. The Bayesian shrinkage rule is advanced by utilizing the semi-supervised learning method in which the neighboring structure of a wavelet coefficient is adopted and an appropriate decision function is derived. According to decision function, wavelet coefficients follow one of two prespecified Bayesian rules obtained using varying related parameters. The decision of a wavelet coefficient depends not only on its magnitude, but also on the neighboring structure on which the coefficient is located. We discuss the theoretical properties of the suggested method and provide recommended parameter settings. We show that the proposed method is often superior to several existing wavelet denoising methods through extensive experimentation.  相似文献   

4.
Summary.  Wavelet shrinkage is an effective nonparametric regression technique, especially when the underlying curve has irregular features such as spikes or discontinuities. The basic idea is simple: take the discrete wavelet transform of data consisting of a signal corrupted by noise; shrink or remove the wavelet coefficients to remove the noise; then invert the discrete wavelet transform to form an estimate of the true underlying curve. Various researchers have proposed increasingly sophisticated methods of doing this by using real-valued wavelets. Complex-valued wavelets exist but are rarely used. We propose two new complex-valued wavelet shrinkage techniques: one based on multiwavelet style shrinkage and the other using Bayesian methods. Extensive simulations show that our methods almost always give significantly more accurate estimates than methods based on real-valued wavelets. Further, our multiwavelet style shrinkage method is both simpler and dramatically faster than its competitors. To understand the excellent performance of this method we present a new risk bound on its hard thresholded coefficients.  相似文献   

5.
We present theoretical results on the random wavelet coefficients covariance structure. We use simple properties of the coefficients to derive a recursive way to compute the within- and across-scale covariances. We point out a useful link between the algorithm proposed and the two-dimensional discrete wavelet transform. We then focus on Bayesian wavelet shrinkage for estimating a function from noisy data. A prior distribution is imposed on the coefficients of the unknown function. We show how our findings on the covariance structure make it possible to specify priors that take into account the full correlation between coefficients through a parsimonious number of hyperparameters. We use Markov chain Monte Carlo methods to estimate the parameters and illustrate our method on bench-mark simulated signals.  相似文献   

6.
In recent years, wavelet shrinkage has become a very appealing method for data de-noising and density function estimation. In particular, Bayesian modelling via hierarchical priors has introduced novel approaches for Wavelet analysis that had become very popular, and are very competitive with standard hard or soft thresholding rules. In this sense, this paper proposes a hierarchical prior that is elicited on the model parameters describing the wavelet coefficients after applying a Discrete Wavelet Transformation (DWT). In difference to other approaches, the prior proposes a multivariate Normal distribution with a covariance matrix that allows for correlations among Wavelet coefficients corresponding to the same level of detail. In addition, an extra scale parameter is incorporated that permits an additional shrinkage level over the coefficients. The posterior distribution for this shrinkage procedure is not available in closed form but it is easily sampled through Markov chain Monte Carlo (MCMC) methods. Applications on a set of test signals and two noisy signals are presented.  相似文献   

7.
Statistical inference in the wavelet domain remains a vibrant area of contemporary statistical research because of desirable properties of wavelet representations and the need of scientific community to process, explore, and summarize massive data sets. Prime examples are biomedical, geophysical, and internet related data. We propose two new approaches to wavelet shrinkage/thresholding.

In the spirit of Efron and Tibshirani's recent work on local false discovery rate, we propose Bayesian Local False Discovery Rate (BLFDR), where the underlying model on wavelet coefficients does not assume known variances. This approach to wavelet shrinkage is shown to be connected with shrinkage based on Bayes factors. The second proposal, Bayesian False Discovery Rate (BaFDR), is based on ordering of posterior probabilities of hypotheses on true wavelets coefficients being null, in Bayesian testing of multiple hypotheses.

We demonstrate that both approaches result in competitive shrinkage methods by contrasting them to some popular shrinkage techniques.  相似文献   

8.
Many wavelet shrinkage methods assume that the data are observed on an equally spaced grid of length of the form 2J for some J. These methods require serious modification or preprocessed data to cope with irregularly spaced data. The lifting scheme is a recent mathematical innovation that obtains a multiscale analysis for irregularly spaced data. A key lifting component is the “predict” step where a prediction of a data point is made. The residual from the prediction is stored and can be thought of as a wavelet coefficient. This article exploits the flexibility of lifting by adaptively choosing the kind of prediction according to a criterion. In this way the smoothness of the underlying ‘wavelet’ can be adapted to the local properties of the function. Multiple observations at a point can readily be handled by lifting through a suitable choice of prediction. We adapt existing shrinkage rules to work with our adaptive lifting methods. We use simulation to demonstrate the improved sparsity of our techniques and improved regression performance when compared to both wavelet and non-wavelet methods suitable for irregular data. We also exhibit the benefits of our adaptive lifting on the real inductance plethysmography and motorcycle data.  相似文献   

9.
10.
Locally stationary wavelet (LSW) processes, built on non-decimated wavelets, can be used to analyse and forecast non-stationary time series. They have been proved useful in the analysis of financial data. In this paper, we first carry out a sensitivity analysis, then propose some practical guidelines for choosing the wavelet bases for these processes. The existing forecasting algorithm is found to be vulnerable to outliers, and a new algorithm is proposed to overcome the weakness. The new algorithm is shown to be stable and outperforms the existing algorithm when applied to real financial data. The volatility forecasting ability of LSW modelling based on our new algorithm is then discussed and shown to be competitive with traditional GARCH models.  相似文献   

11.
Selection of appropriate predictors for right censored time to event data is very often encountered by the practitioners. We consider the ?1 penalized regression or “least absolute shrinkage and selection operator” as a tool for predictor selection in association with accelerated failure time model. The choice of the penalizing parameter λ is crucial to identify the correct set of covariates. In this paper, we propose an information theory-based method to choose λ under log-normal distribution. Furthermore, an efficient algorithm is discussed in the same context. The performance of the proposed λ and the algorithm is illustrated through simulation studies and a real data analysis. The convergence of the algorithm is also discussed.  相似文献   

12.
This article introduces a fast cross-validation algorithm that performs wavelet shrinkage on data sets of arbitrary size and irregular design and also simultaneously selects good values of the primary resolution and number of vanishing moments.We demonstrate the utility of our method by suggesting alternative estimates of the conditional mean of the well-known Ethanol data set. Our alternative estimates outperform the Kovac-Silverman method with a global variance estimate by 25% because of the careful selection of number of vanishing moments and primary resolution. Our alternative estimates are simpler than, and competitive with, results based on the Kovac-Silverman algorithm equipped with a local variance estimate.We include a detailed simulation study that illustrates how our cross-validation method successfully picks good values of the primary resolution and number of vanishing moments for unknown functions based on Walsh functions (to test the response to changing primary resolution) and piecewise polynomials with zero or one derivative (to test the response to function smoothness).  相似文献   

13.
Generalized linear mixed models are a widely used tool for modeling longitudinal data. However, their use is typically restricted to few covariates, because the presence of many predictors yields unstable estimates. The presented approach to the fitting of generalized linear mixed models includes an L 1-penalty term that enforces variable selection and shrinkage simultaneously. A gradient ascent algorithm is proposed that allows to maximize the penalized log-likelihood yielding models with reduced complexity. In contrast to common procedures it can be used in high-dimensional settings where a large number of potentially influential explanatory variables is available. The method is investigated in simulation studies and illustrated by use of real data sets.  相似文献   

14.
The methods of estimation of nonparametric regression function are quite common in statistical application. In this paper, the new Bayesian wavelet thresholding estimation is considered. The new mixture prior distributions for the estimation of nonparametric regression function by applying wavelet transformation are investigated. The reversible jump algorithm to obtain the appropriate prior distributions and value of thresholding is used. The performance of the proposed estimator is assessed with simulated data from well-known test functions by comparing the convergence rate of the proposed estimator with respect to another by evaluating the average mean square error and standard deviations. Finally by applying the developed method, density function of galaxy data is estimated.  相似文献   

15.
Multi-index models have attracted much attention recently as an approach to circumvent the curse of dimensionality when modeling high-dimensional data. This paper proposes a novel regularization method, called MAVE-glasso, for simultaneous parameter estimation and variable selection in multi-index models. The advantages of the proposed method include transformation invariance, automatic variable selection, automatic removal of noninformative observations, and row-wise shrinkage. An efficient row-wise coordinate descent algorithm is proposed to calculate the estimates. Simulation and real examples are used to demonstrate the excellent performance of MAVE-glasso.  相似文献   

16.
In the problem of estimating a location parameter in any symmetric unimodal location parameter model, we demonstrate that Bayes rules with respect to squared error loss can be expanders for some priors that belong to the family of all symmetric priors. That generalizes the results obtained by DasGupta and Rubin for the one dimensional case. We also consider symmetric priors which either have an appropriate point mass at 0 or are unimodal, and prove that under the latter condition all Bayes rules are shrinkers. Results of such nature are important, for example, in wavelet based function estimation and data denoising, where shrinkage of wavelet coefficients is associated with smoothing the data. We illustrate the results using FIAT stock market data.  相似文献   

17.
Summary.  For regularly spaced one-dimensional data, wavelet shrinkage has proven to be a compelling method for non-parametric function estimation. We create three new multiscale methods that provide wavelet-like transforms both for data arising on graphs and for irregularly spaced spatial data in more than one dimension. The concept of scale still exists within these transforms, but as a continuous quantity rather than dyadic levels. Further, we adapt recent empirical Bayesian shrinkage techniques to enable us to perform multiscale shrinkage for function estimation both on graphs and for irregular spatial data. We demonstrate that our methods perform very well when compared with several other methods for spatial regression for both real and simulated data. Although we concentrate on multiscale shrinkage (regression) we present our new 'wavelet transforms' as generic tools intended to be the basis of methods that might benefit from a multiscale representation of data either on graphs or for irregular spatial data.  相似文献   

18.
Wavelet shrinkage estimation is an increasingly popular method for signal denoising and compression. Although Bayes estimators can provide excellent mean-squared error (MSE) properties, the selection of an effective prior is a difficult task. To address this problem, we propose empirical Bayes (EB) prior selection methods for various error distributions including the normal and the heavier-tailed Student t -distributions. Under such EB prior distributions, we obtain threshold shrinkage estimators based on model selection, and multiple-shrinkage estimators based on model averaging. These EB estimators are seen to be computationally competitive with standard classical thresholding methods, and to be robust to outliers in both the data and wavelet domains. Simulated and real examples are used to illustrate the flexibility and improved MSE performance of these methods in a wide variety of settings.  相似文献   

19.
Abstract

Handling data with the nonignorably missing mechanism is still a challenging problem in statistics. In this paper, we develop a fully Bayesian adaptive Lasso approach for quantile regression models with nonignorably missing response data, where the nonignorable missingness mechanism is specified by a logistic regression model. The proposed method extends the Bayesian Lasso by allowing different penalization parameters for different regression coefficients. Furthermore, a hybrid algorithm that combined the Gibbs sampler and Metropolis-Hastings algorithm is implemented to simulate the parameters from posterior distributions, mainly including regression coefficients, shrinkage coefficients, parameters in the non-ignorable missing models. Finally, some simulation studies and a real example are used to illustrate the proposed methodology.  相似文献   

20.
Wavelet shrinkage for unequally spaced data   总被引:4,自引:0,他引:4  
Wavelet shrinkage (WaveShrink) is a relatively new technique for nonparametric function estimation that has been shown to have asymptotic near-optimality properties over a wide class of functions. As originally formulated by Donoho and Johnstone, WaveShrink assumes equally spaced data. Because so many statistical applications (e.g., scatterplot smoothing) naturally involve unequally spaced data, we investigate in this paper how WaveShrink can be adapted to handle such data. Focusing on the Haar wavelet, we propose four approaches that extend the Haar wavelet transform to the unequally spaced case. Each approach is formulated in terms of continuous wavelet basis functions applied to a piecewise constant interpolation of the observed data, and each approach leads to wavelet coefficients that can be computed via a matrix transform of the original data. For each approach, we propose a practical way of adapting WaveShrink. We compare the four approaches in a Monte Carlo study and find them to be quite comparable in performance. The computationally simplest approach (isometric wavelets) has an appealing justification in terms of a weighted mean square error criterion and readily generalizes to wavelets of higher order than the Haar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号