首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
We study a particular marked three-dimensional point process sample that represents a Laguerre tessellation. It comes from a polycrystalline sample of aluminium alloy material. The ‘points’ are the cell generators while the ‘marks’ are radius marks that control the size and shape of the tessellation cells. Our statistical mark correlation analyses show that the marks of the sample are in clear and plausible spatial correlation: the marks of generators close together tend to be small and similar and the form of the correlation functions does not justify geostatistical marking. We show that a simplified modelling of tessellations by Laguerre tessellations with independent radius marks may lead to wrong results. When we started from the aluminium alloy data and generated random marks by random permutation we obtained tessellations with characteristics quite different from the original ones. We observed similar behaviour for simulated Laguerre tessellations. This fact, which seems to be natural for the given data type, makes fitting of models to empirical Laguerre tessellations quite difficult: the generator points and radius marks have to be modelled simultaneously. This may imply that the reconstruction methods are more efficient than point-process modelling if only samples of similar Laguerre tessellations are needed. We also found that literature recipes for bandwidth choice for estimating correlation functions should be used with care.  相似文献   

2.
3.
A model for an inhomogeneous Poisson process with high intensity near the edges of a Voronoi tessellation in 2D or 3D is proposed. The model is analysed in a Bayesian setting with priors on nuclei of the Voronoi tessellation and other model parameters. An MCMC algorithm is constructed to sample from the posterior, which contains information about the unobserved Voronoi tessellation and the model parameters. A major element of the MCMC algorithm is the reconstruction of the Voronoi tessellation after a proposed local change of the tessellation. A simulation study and examples of applications from biology (animal territories) and material science (alumina grain structure) are presented.  相似文献   

4.
In this article we propose a novel non-parametric sampling approach to estimate posterior distributions from parameters of interest. Starting from an initial sample over the parameter space, this method makes use of this initial information to form a geometrical structure known as Voronoi tessellation over the whole parameter space. This rough approximation to the posterior distribution provides a way to generate new points from the posterior distribution without any additional costly model evaluations. By using a traditional Markov Chain Monte Carlo (MCMC) over the non-parametric tessellation, the initial approximate distribution is refined sequentially. We applied this method to a couple of climate models to show that this hybrid scheme successfully approximates the posterior distribution of the model parameters.  相似文献   

5.
We consider stationary Poisson–Voronoi tessellations (PVT) in the Euclidean plane and study the properties of Voronoi tessellations induced by linear Poisson processes on the edges of the PVT. We are especially interested in simulation algorithms for the typical cell. Two different simulation algorithms are introduced. The first algorithm directly simulates the typical cell, whereas the second algorithm simulates cells from which distributional properties of the typical cell can be obtained. This second algorithm can also be used for simulating the typical cell of other Cox–Voronoi tessellations. The implementation of both algorithms is tested for their correctness using random software tests. Then different cell characteristics are studied by simulation and compared with the typical cell of PVT and Cox–Voronoi tessellations based on linear Poisson processes on the lines of Poisson line processes. Our results can be applied, for example, in the analysis of telecommunication networks and vesicle paths on cytoskeletal networks.  相似文献   

6.
Spatial econometric models estimated on the big geo-located point data have at least two problems: limited computational capabilities and inefficient forecasting for the new out-of-sample geo-points. This is because of spatial weights matrix W defined for in-sample observations only and the computational complexity. Machine learning models suffer the same when using kriging for predictions; thus this problem still remains unsolved. The paper presents a novel methodology for estimating spatial models on big data and predicting in new locations. The approach uses bootstrap and tessellation to calibrate both model and space. The best bootstrapped model is selected with the PAM (Partitioning Around Medoids) algorithm by classifying the regression coefficients jointly in a nonindependent manner. Voronoi polygons for the geo-points used in the best model allow for a representative space division. New out-of-sample points are assigned to tessellation tiles and linked to the spatial weights matrix as a replacement for an original point what makes feasible usage of calibrated spatial models as a forecasting tool for new locations. There is no trade-off between forecast quality and computational efficiency in this approach. An empirical example illustrates a model for business locations and firms' profitability.  相似文献   

7.
In this paper, we propose a Bayesian partition modeling for lifetime data in the presence of a cure fraction by considering a local structure generated by a tessellation which depends on covariates. In this modeling we include information of nominal qualitative variables with more than two categories or ordinal qualitative variables. The proposed modeling is based on a promotion time cure model structure but assuming that the number of competing causes follows a geometric distribution. It is an alternative modeling strategy to the conventional survival regression modeling generally used for modeling lifetime data in the presence of a cure fraction, which models the cure fraction through a (generalized) linear model of the covariates. An advantage of our approach is its ability to capture the effects of covariates in a local structure. The flexibility of having a local structure is crucial to capture local effects and features of the data. The modeling is illustrated on two real melanoma data sets.  相似文献   

8.
The most common assumption in geostatistical modeling of malaria is stationarity, that is spatial correlation is a function of the separation vector between locations. However, local factors (environmental or human-related activities) may influence geographical dependence in malaria transmission differently at different locations, introducing non-stationarity. Ignoring this characteristic in malaria spatial modeling may lead to inaccurate estimates of the standard errors for both the covariate effects and the predictions. In this paper, a model based on random Voronoi tessellation that takes into account non-stationarity was developed. In particular, the spatial domain was partitioned into sub-regions (tiles), a stationary spatial process was assumed within each tile and between-tile correlation was taken into account. The number and configuration of the sub-regions are treated as random parameters in the model and inference is made using reversible jump Markov chain Monte Carlo simulation. This methodology was applied to analyze malaria survey data from Mali and to produce a country-level smooth map of malaria risk.  相似文献   

9.
Non-parametric Bayesian Estimation of a Spatial Poisson Intensity   总被引:5,自引:0,他引:5  
A method introduced by Arjas & Gasbarra (1994) and later modified by Arjas & Heikkinen (1997) for the non-parametric Bayesian estimation of an intensity on the real line is generalized to cover spatial processes. The method is based on a model approximation where the approximating intensities have the structure of a piecewise constant function. Random step functions on the plane are generated using Voronoi tessellations of random point patterns. Smoothing between nearby intensity values is applied by means of a Markov random field prior in the spirit of Bayesian image analysis. The performance of the method is illustrated in examples with both real and simulated data.  相似文献   

10.
We investigate a Bayesian method for the segmentation of muscle fibre images. The images are reasonably well approximated by a Dirichlet tessellation, and so we use a deformable template model based on Voronoi polygons to represent the segmented image. We consider various prior distributions for the parameters and suggest an appropriate likelihood. Following the Bayesian paradigm, the mathematical form for the posterior distribution is obtained (up to an integrating constant). We introduce a Metropolis-Hastings algorithm and a reversible jump Markov chain Monte Carlo algorithm (RJMCMC) for simulation from the posterior when the number of polygons is fixed or unknown. The particular moves in the RJMCMC algorithm are birth, death and position/colour changes of the point process which determines the location of the polygons. Segmentation of the true image was carried out using the estimated posterior mode and posterior mean. A simulation study is presented which is helpful for tuning the hyperparameters and to assess the accuracy. The algorithms work well on a real image of a muscle fibre cross-section image, and an additional parameter, which models the boundaries of the muscle fibres, is included in the final model.  相似文献   

11.
The proportion of triangles in a Poisson – Voronoi tessellation has been recently represented as a five-fold integral. Here we give a simpler representation, reduce it to a fourfold integral and discuss its numerical evaluation.  相似文献   

12.
13.
In this article a generalized Frank copula was selected to model the dependence between the energy on two frequency bands of the speech signal, coming from eight languages. An algorithm was developed that uses maximum likelihood to choose the best fitting copula’s parameters. Through bootstrap, the algorithm estimates the variability of the parameters for each language and also computes confidence regions by means of Voronoi tesselations. A linguistic conjecture which claims that the languages are organized in three rhythmic classes, was confirmed by the Voronoi regions. Modeling with a uniparametric Frank copula, the different degrees of dependence between the energies were quantified.  相似文献   

14.
In this paper we consider unbalanced random effects models under heteroscedastic variances. By using' the harmonic mean approach, it is shown that the problems are analogous to those from balanced random effects models under horaoscedastic variances. Thus, by using the harmonic mean approach, statistical inferences about variance components are derived by using procedures from balanced models under homoscedastic variances. Laguerre polynomial expansion is used to approximate the sampling distributions of relevant statistics.  相似文献   

15.
In this study, an evaluation of Bayesian hierarchical models is made based on simulation scenarios to compare single-stage and multi-stage Bayesian estimations. Simulated datasets of lung cancer disease counts for men aged 65 and older across 44 wards in the London Health Authority were analysed using a range of spatially structured random effect components. The goals of this study are to determine which of these single-stage models perform best given a certain simulating model, how estimation methods (single- vs. multi-stage) compare in yielding posterior estimates of fixed effects in the presence of spatially structured random effects, and finally which of two spatial prior models – the Leroux or ICAR model, perform best in a multi-stage context under different assumptions concerning spatial correlation. Among the fitted single-stage models without covariates, we found that when there is low amount of variability in the distribution of disease counts, the BYM model is relatively robust to misspecification in terms of DIC, while the Leroux model is the least robust to misspecification. When these models were fit to data generated from models with covariates, we found that when there was one set of covariates – either spatially correlated or non-spatially correlated, changing the values of the fixed coefficients affected the ability of either the Leroux or ICAR model to fit the data well in terms of DIC. When there were multiple sets of spatially correlated covariates in the simulating model, however, we could not distinguish the goodness of fit to the data between these single-stage models. We found that the multi-stage modelling process via the Leroux and ICAR models generally reduced the variance of the posterior estimated fixed effects for data generated from models with covariates and a UH term compared to analogous single-stage models. Finally, we found the multi-stage Leroux model compares favourably to the multi-stage ICAR model in terms of DIC. We conclude that the mutli-stage Leroux model should be seriously considered in applications of Bayesian disease mapping when an investigator desires to fit a model with both fixed effects and spatially structured random effects to Poisson count data.  相似文献   

16.
Abstract. We introduce a class of Gibbs–Markov random fields built on regular tessellations that can be understood as discrete counterparts of Arak–Surgailis polygonal fields. We focus first on consistent polygonal fields, for which we show consistency, Markovianity and solvability by means of dynamic representations. Next, we develop disagreement loop as well as path creation and annihilation dynamics for their general Gibbsian modifications, which cover most lattice‐based Gibbs–Markov random fields subject to certain mild conditions. Applications to foreground–background image segmentation problems are discussed.  相似文献   

17.
18.
In this paper we consider a two-way layout random-effects model with interaction proportional to the product of two random components and derive the distributions of the sums of squares and the F-ratio under the usual normality assumption for the random effects. Approximations to these distributions by finite series Laguerre polynomial expansions are then developed. Some numerical results are given to illustrate the applications of the theory.  相似文献   

19.
The current study follows an educational intervention on bottle-weaning to simultaneously evaluate effects of the bottle-weaning intervention on reducing bottle use, daily milk intake from bottles, and daily energy intake in toddlers aged 11–13 months. In this paper, we propose to use shared parameter models and random effects models to model these outcomes jointly. Our joint models consist of two submodels: a two-part submodel for modeling the odds of bottle use and the intensity of daily milk intake from bottles, and a linear mixed submodel for modeling the intensity of daily energy intake. The two submodels are linked by either shared random effects or separate but correlated random effects. We investigate whether the intervention effects, parameter estimates, and model fit differ between shared parameter models and random effects models.  相似文献   

20.
Summary.  Pharmacological experiments in brain microscopy study patterns of cellular activ- ation in response to psychotropic drugs for connected neuroanatomic regions. A typical ex- perimental design produces replicated point patterns having highly complex spatial variability. Modelling this variability hierarchically can enhance the inference for comparing treatments. We propose a semiparametric formulation that combines the robustness of a nonparametric kernel method with the efficiency of likelihood-based parameter estimation. In the convenient framework of a generalized linear mixed model, we decompose pattern variation by kriging the intensities of a hierarchically heterogeneous spatial point process. This approximation entails discretizing the inhomogeneous Poisson likelihood by Voronoi tiling of augmented point patterns. The resulting intensity-weighted log-linear model accommodates spatial smoothing through a reduced rank penalized linear spline. To correct for anatomic distortion between subjects, we interpolate point locations via an isomorphic mapping so that smoothing occurs relative to common neuroanatomical atlas co-ordinates. We propose a criterion for choosing the degree and spatial locale of smoothing based on truncating the ordered set of smoothing covariates to minimize residual extra-dispersion. Additional spatial covariates, experimental design factors, hierarchical random effects and intensity functions are readily accommodated in the linear predictor, enabling comprehensive analyses of the salient properties underlying replicated point patterns. We illustrate our method through application to data from a novel study of drug effects on neuronal activation patterns in the brain of rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号