首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
As a useful extension of partially linear models and varying coefficient models, the partially linear varying coefficient model is useful in statistical modelling. This paper considers statistical inference for the semiparametric model when the covariates in the linear part are measured with additive error and some additional linear restrictions on the parametric component are available. We propose a restricted modified profile least-squares estimator for the parametric component, and prove the asymptotic normality of the proposed estimator. To test hypotheses on the parametric component, we propose a test statistic based on the difference between the corrected residual sums of squares under the null and alterative hypotheses, and show that its limiting distribution is a weighted sum of independent chi-square distributions. We also develop an adjusted test statistic, which has an asymptotically standard chi-squared distribution. Some simulation studies are conducted to illustrate our approaches.  相似文献   

2.
ABSTRACT

As a compromise between parametric regression and non-parametric regression models, partially linear models are frequently used in statistical modelling. This paper is concerned with the estimation of partially linear regression model in the presence of multicollinearity. Based on the profile least-squares approach, we propose a novel principal components regression (PCR) estimator for the parametric component. When some additional linear restrictions on the parametric component are available, we construct a corresponding restricted PCR estimator. Some simulations are conducted to examine the performance of our proposed estimators and the results are satisfactory. Finally, a real data example is analysed.  相似文献   

3.
As a compromise between parametric regression and nonparametric regression, partially linear models are frequently used in statistical modelling. This article considers statistical inference for this semiparametric model when the linear covariate is measured with additive error and some additional linear restrictions on the parametric component are assumed to hold. We propose a restricted corrected profile least-squares estimator for the parametric component, and study the asymptotic normality of the estimator. To test hypothesis on the parametric component, we construct a Wald test statistic and obtain its limiting distribution. Some simulation studies are conducted to illustrate our approaches.  相似文献   

4.
This paper considers statistical inference for the partially linear additive models, which are useful extensions of additive models and partially linear models. We focus on the case where some covariates are measured with additive errors, and the response variable is sometimes missing. We propose a profile least-squares estimator for the parametric component and show that the resulting estimator is asymptotically normal. To construct a confidence region for the parametric component, we also propose an empirical-likelihood-based statistic, which is shown to have a chi-squared distribution asymptotically. Furthermore, a simulation study is conducted to illustrate the performance of the proposed methods.  相似文献   

5.
This article considers statistical inference for partially linear varying-coefficient models when the responses are missing at random. We propose a profile least-squares estimator for the parametric component with complete-case data and show that the resulting estimator is asymptotically normal. To avoid to estimate the asymptotic covariance in establishing confidence region of the parametric component with the normal-approximation method, we define an empirical likelihood based statistic and show that its limiting distribution is chi-squared distribution. Then, the confidence regions of the parametric component with asymptotically correct coverage probabilities can be constructed by the result. To check the validity of the linear constraints on the parametric component, we construct a modified generalized likelihood ratio test statistic and demonstrate that it follows asymptotically chi-squared distribution under the null hypothesis. Then, we extend the generalized likelihood ratio technique to the context of missing data. Finally, some simulations are conducted to illustrate the proposed methods.  相似文献   

6.
This article considers statistical inference for the heteroscedastic partially linear varying coefficient models. We construct an efficient estimator for the parametric component by applying the weighted profile least-squares approach, and show that it is semiparametrically efficient in the sense that the inverse of the asymptotic variance of the estimator reaches the semiparametric efficiency bound. Simulation studies are conducted to illustrate the performance of the proposed method.  相似文献   

7.
Abstract

In this paper, we introduce Liu estimator for the vector of parameters in linear measurement error models and discuss its asymptotic properties. Based on the Liu estimator, diagnostic measures are developed to identify influential observations. Additionally, the analogs of Cook’s distance and likelihood distance are proposed to determine influential observations using case deletion approach. A parametric bootstrap procedure is used to obtain empirical distributions of the test statistics. Finally, the performance of the influence measures have been illustrated through simulation study and analyzing a real data set.  相似文献   

8.
Abstract. The partially linear in‐slide model (PLIM) is a useful tool to make econometric analyses and to normalize microarray data. In this article, by using series approximations and a least squares procedure, we propose a semiparametric least squares estimator (SLSE) for the parametric component and a series estimator for the non‐parametric component. Under weaker conditions than those imposed in the literature, we show that the SLSE is asymptotically normal and that the series estimator attains the optimal convergence rate of non‐parametric regression. We also investigate the estimating problem of the error variance. In addition, we propose a wild block bootstrap‐based test for the form of the non‐parametric component. Some simulation studies are conducted to illustrate the finite sample performance of the proposed procedure. An example of application on a set of economical data is also illustrated.  相似文献   

9.
In the presence of collinearity certain biased estimation procedures like ridge regression, generalized inverse estimator, principal component regression, Liu estimator, or improved ridge and Liu estimators are used to improve the ordinary least squares (OLS) estimates in the linear regression model. In this paper new biased estimator (Liu estimator), almost unbiased (improved) Liu estimator and their residuals will be analyzed and compared with OLS residuals in terms of mean-squared error.  相似文献   

10.
The logistic regression model is used when the response variables are dichotomous. In the presence of multicollinearity, the variance of the maximum likelihood estimator (MLE) becomes inflated. The Liu estimator for the linear regression model is proposed by Liu to remedy this problem. Urgan and Tez and Mansson et al. examined the Liu estimator (LE) for the logistic regression model. We introduced the restricted Liu estimator (RLE) for the logistic regression model. Moreover, a Monte Carlo simulation study is conducted for comparing the performances of the MLE, restricted maximum likelihood estimator (RMLE), LE, and RLE for the logistic regression model.  相似文献   

11.
Partially linear models are extensions of linear models that include a nonparametric function of some covariate allowing an adequate and more flexible handling of explanatory variables than in linear models. The difference-based estimation in partially linear models is an approach designed to estimate parametric component by using the ordinary least squares estimator after removing the nonparametric component from the model by differencing. However, it is known that least squares estimates do not provide useful information for the majority of data when the error distribution is not normal, particularly when the errors are heavy-tailed and when outliers are present in the dataset. This paper aims to find an outlier-resistant fit that represents the information in the majority of the data by robustly estimating the parametric and the nonparametric components of the partially linear model. Simulations and a real data example are used to illustrate the feasibility of the proposed methodology and to compare it with the classical difference-based estimator when outliers exist.  相似文献   

12.
In this article, we introduce a ridge estimator for the vector of parameters β in a semiparametric model when additional linear restrictions on the parameter vector are assumed to hold. We also obtain the semiparametric restricted ridge estimator for the parametric component in the semiparametric regression model. The ideas in this article are illustrated with a data set consisting of housing prices and through a comparison of the performances of the proposed and related estimators via a Monte Carlo simulation.  相似文献   

13.
An alternative stochastic restricted Liu estimator in linear regression   总被引:2,自引:1,他引:1  
In this paper, we introduce an alternative stochastic restricted Liu estimator for the vector of parameters in a linear regression model when additional stochastic linear restrictions on the parameter vector are assumed to hold. The new estimator is a generalization of the ordinary mixed estimator (OME) (Durbin in J Am Stat Assoc 48:799–808, 1953; Theil and Goldberger in Int Econ Rev 2:65–78, 1961; Theil in J Am Stat Assoc 58:401–414, 1963) and Liu estimator proposed by Liu (Commun Stat Theory Methods 22:393–402, 1993). Necessary and sufficient conditions for the superiority of the new stochastic restricted Liu estimator over the OME, the Liu estimator and the estimator proposed by Hubert and Wijekoon (Stat Pap 47:471–479, 2006) in the mean squared error matrix (MSEM) sense are derived. Furthermore, a numerical example based on the widely analysed dataset on Portland cement (Woods et al. in Ind Eng Chem 24:1207–1241, 1932) and a Monte Carlo evaluation of the estimators are also given to illustrate some of the theoretical results.  相似文献   

14.
Abstract

We consider statistical inference for additive partial linear models when the linear covariate is measured with error. A bias-corrected spline-backfitted kernel smoothing method is proposed. Under mild assumptions, the proposed component function and parameter estimator are oracally efficient and fast to compute. The nonparametric function estimator’s pointwise distribution is asymptotically equivalent to an function estimator in partial linear model. Finite-sample performance of the proposed estimators is assessed by simulation experiments. The proposed methods are applied to Boston house data set.  相似文献   

15.
In this paper, we study the estimation of the unbalanced panel data partially linear models with a one-way error components structure. A weighted semiparametric least squares estimator (WSLSE) is developed using polynomial spline approximation and least squares. We show that the WSLSE is asymptotically more efficient than the corresponding unweighted estimator for both parametric and nonparametric components of the model. This is a significant improvement over previous results in the literature which showed that the simply weighting technique can only improve the estimation of the parametric component. The asymptotic normalities of the proposed WSLSE are also established.  相似文献   

16.
Xing-Cai Zhou 《Statistics》2013,47(3):521-534
An inherent characteristic of longitudinal data is the dependence among the observations within the same subject. For exhibiting dependencies among the observations within the same subject, this paper considers a semiparametric partially linear regression model for longitudinal data based on martingale difference error's structure. We establish a strong consistency for the least squares estimator of a parametric component and the estimator of a non-parametric function under some mild conditions. A simulation study shows the performance of the proposed estimator in finite samples.  相似文献   

17.
Abstract

In this article, we consider a panel data partially linear regression model with fixed effect and non parametric time trend function. The data can be dependent cross individuals through linear regressor and error components. Unlike the methods using non parametric smoothing technique, a difference-based method is proposed to estimate linear regression coefficients of the model to avoid bandwidth selection. Here the difference technique is employed to eliminate the non parametric function effect, not the fixed effects, on linear regressor coefficient estimation totally. Therefore, a more efficient estimator for parametric part is anticipated, which is shown to be true by the simulation results. For the non parametric component, the polynomial spline technique is implemented. The asymptotic properties of estimators for parametric and non parametric parts are presented. We also show how to select informative ones from a number of covariates in the linear part by using smoothly clipped absolute deviation-penalized estimators on a difference-based least-squares objective function, and the resulting estimators perform asymptotically as well as the oracle procedure in terms of selecting the correct model.  相似文献   

18.
We investigate the estimators of parameters of interest for a single-index varying-coefficient model. To estimate the unknown parameter efficiently, we first estimate the nonparametric component using local linear smoothing, then construct an estimator of parametric component by using estimating equations. Our estimator for the parametric component is asymptotically efficient, and the estimator of nonparametric component has asymptotic normality and optimal uniform convergence rate. Our results provide ways to construct confidence regions for the involved unknown parameters. The finite-sample behavior of the new estimators is evaluated through simulation studies, and applications to two real data are illustrated.  相似文献   

19.
A new biased estimator based on ridge estimation   总被引:3,自引:0,他引:3  
In this paper we introduce a new biased estimator for the vector of parameters in a linear regression model and discuss its properties. We show that our new biased estimator is superior, in the mean square error(mse) sense, to the ordinary least squares (OLS) estimator, the ordinary ridge regression (ORR) estimator and the Liu estimator. We also compare the performance of our new biased estimator with two other special Liu-type estimators proposed in Liu (2003). We illustrate our findings with a numerical example based on the widely analysed dataset on Portland cement.  相似文献   

20.
In this article, we consider the estimation of a partially linear model when stochastic linear restrictions on the parameter components are assumed to hold. Based on the weighted mixed estimator, profile least-squares method, and ridge method, a weighted stochastic restricted ridge estimator of the parametric component is introduced. The properties of the new estimator are also discussed. Finally, a simulation study is given to show the performance of the new estimator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号