共查询到20条相似文献,搜索用时 0 毫秒
1.
In the presence of missing values, researchers may be interested in the rates of missing information. The rates of missing information are (a) important for assessing how the missing information contributes to inferential uncertainty about, Q, the population quantity of interest, (b) are an important component in the decision of the number of imputations, and (c) can be used to test model uncertainty and model fitting. In this article I will derive the asymptotic distribution of the rates of missing information in two scenarios: the conventional multiple imputation (MI), and the two-stage MI. Numerically I will show that the proposed asymptotic distribution agrees with the simulated one. I will also suggest the number of imputations needed to obtain reliable missing information rate estimates for each method, based on the asymptotic distribution. 相似文献
2.
Missing data often complicate the analysis of scientific data. Multiple imputation is a general purpose technique for analysis of datasets with missing values. The approach is applicable to a variety of missing data patterns but often complicated by some restrictions like the type of variables to be imputed and the mechanism underlying the missing data. In this paper, the authors compare the performance of two multiple imputation methods, namely fully conditional specification and multivariate normal imputation in the presence of ordinal outcomes with monotone missing data patterns. Through a simulation study and an empirical example, the authors show that the two methods are indeed comparable meaning any of the two may be used when faced with scenarios, at least, as the ones presented here. 相似文献
3.
In this paper we propose a latent class based multiple imputation approach for analyzing missing categorical covariate data in a highly stratified data model. In this approach, we impute the missing data assuming a latent class imputation model and we use likelihood methods to analyze the imputed data. Via extensive simulations, we study its statistical properties and make comparisons with complete case analysis, multiple imputation, saturated log-linear multiple imputation and the Expectation–Maximization approach under seven missing data mechanisms (including missing completely at random, missing at random and not missing at random). These methods are compared with respect to bias, asymptotic standard error, type I error, and 95% coverage probabilities of parameter estimates. Simulations show that, under many missingness scenarios, latent class multiple imputation performs favorably when jointly considering these criteria. A data example from a matched case–control study of the association between multiple myeloma and polymorphisms of the Inter-Leukin 6 genes is considered. 相似文献
4.
Frequently in clinical and epidemiologic studies, the event of interest is recurrent (i.e., can occur more than once per subject). When the events are not of the same type, an analysis which accounts for the fact that events fall into different categories will often be more informative. Often, however, although event times may always be known, information through which events are categorized may potentially be missing. Complete‐case methods (whose application may require, for example, that events be censored when their category cannot be determined) are valid only when event categories are missing completely at random. This assumption is rather restrictive. The authors propose two multiple imputation methods for analyzing multiple‐category recurrent event data under the proportional means/rates model. The use of a proper or improper imputation technique distinguishes the two approaches. Both methods lead to consistent estimation of regression parameters even when the missingness of event categories depends on covariates. The authors derive the asymptotic properties of the estimators and examine their behaviour in finite samples through simulation. They illustrate their approach using data from an international study on dialysis. 相似文献
5.
Phillip Dinh 《Pharmaceutical statistics》2013,12(5):260-267
In longitudinal clinical studies, after randomization at baseline, subjects are followed for a period of time for development of symptoms. The interested inference could be the mean change from baseline to a particular visit in some lab values, the proportion of responders to some threshold category at a particular visit post baseline, or the time to some important event. However, in some applications, the interest may be in estimating the cumulative distribution function (CDF) at a fixed time point post baseline. When the data are fully observed, the CDF can be estimated by the empirical CDF. When patients discontinue prematurely during the course of the study, the empirical CDF cannot be directly used. In this paper, we use multiple imputation as a way to estimate the CDF in longitudinal studies when data are missing at random. The validity of the method is assessed on the basis of the bias and the Kolmogorov–Smirnov distance. The results suggest that multiple imputation yields less bias and less variability than the often used last observation carried forward method. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
6.
Federica Cugnata 《统计学通讯:模拟与计算》2017,46(1):315-330
In this article, we compare alternative missing imputation methods in the presence of ordinal data, in the framework of CUB (Combination of Uniform and (shifted) Binomial random variable) models. Various imputation methods are considered, as are univariate and multivariate approaches. The first step consists of running a simulation study designed by varying the parameters of the CUB model, to consider and compare CUB models as well as other methods of missing imputation. We use real datasets on which to base the comparison between our approach and some general methods of missing imputation for various missing data mechanisms. 相似文献
7.
《Journal of Statistical Computation and Simulation》2012,82(11):2140-2156
ABSTRACTWe propose a multiple imputation method based on principal component analysis (PCA) to deal with incomplete continuous data. To reflect the uncertainty of the parameters from one imputation to the next, we use a Bayesian treatment of the PCA model. Using a simulation study and real data sets, the method is compared to two classical approaches: multiple imputation based on joint modelling and on fully conditional modelling. Contrary to the others, the proposed method can be easily used on data sets where the number of individuals is less than the number of variables and when the variables are highly correlated. In addition, it provides unbiased point estimates of quantities of interest, such as an expectation, a regression coefficient or a correlation coefficient, with a smaller mean squared error. Furthermore, the widths of the confidence intervals built for the quantities of interest are often smaller whilst ensuring a valid coverage. 相似文献
8.
A comparison of multiple imputation and doubly robust estimation for analyses with missing data 总被引:1,自引:0,他引:1
James R. Carpenter Michael G. Kenward Stijn Vansteelandt 《Journal of the Royal Statistical Society. Series A, (Statistics in Society)》2006,169(3):571-584
Summary. Multiple imputation is now a well-established technique for analysing data sets where some units have incomplete observations. Provided that the imputation model is correct, the resulting estimates are consistent. An alternative, weighting by the inverse probability of observing complete data on a unit, is conceptually simple and involves fewer modelling assumptions, but it is known to be both inefficient (relative to a fully parametric approach) and sensitive to the choice of weighting model. Over the last decade, there has been a considerable body of theoretical work to improve the performance of inverse probability weighting, leading to the development of 'doubly robust' or 'doubly protected' estimators. We present an intuitive review of these developments and contrast these estimators with multiple imputation from both a theoretical and a practical viewpoint. 相似文献
9.
《Journal of Statistical Computation and Simulation》2012,82(11):1653-1675
In real-life situations, we often encounter data sets containing missing observations. Statistical methods that address missingness have been extensively studied in recent years. One of the more popular approaches involves imputation of the missing values prior to the analysis, thereby rendering the data complete. Imputation broadly encompasses an entire scope of techniques that have been developed to make inferences about incomplete data, ranging from very simple strategies (e.g. mean imputation) to more advanced approaches that require estimation, for instance, of posterior distributions using Markov chain Monte Carlo methods. Additional complexity arises when the number of missingness patterns increases and/or when both categorical and continuous random variables are involved. Implementation of routines, procedures, or packages capable of generating imputations for incomplete data are now widely available. We review some of these in the context of a motivating example, as well as in a simulation study, under two missingness mechanisms (missing at random and missing not at random). Thus far, evaluation of existing implementations have frequently centred on the resulting parameter estimates of the prescribed model of interest after imputing the missing data. In some situations, however, interest may very well be on the quality of the imputed values at the level of the individual – an issue that has received relatively little attention. In this paper, we focus on the latter to provide further insight about the performance of the different routines, procedures, and packages in this respect. 相似文献
10.
AbstractA method is proposed for the estimation of missing data in analysis of covariance models. This is based on obtaining an estimate of the missing observation that minimizes the error sum of squares. Specific derivation of this estimate is carried out for the one-factor analysis of covariance, and numerical examples are given to show the nature of the estimates produced. Parameter estimates of the imputed data are then compared with those of the incomplete data. 相似文献
11.
《Journal of Statistical Computation and Simulation》2012,82(11):2217-2228
ABSTRACTWe present here an extension of Pan's multiple imputation approach to Cox regression in the setting of interval-censored competing risks data. The idea is to convert interval-censored data into multiple sets of complete or right-censored data and to use partial likelihood methods to analyse them. The process is iterated, and at each step, the coefficient of interest, its variance–covariance matrix, and the baseline cumulative incidence function are updated from multiple posterior estimates derived from the Fine and Gray sub-distribution hazards regression given augmented data. Through simulation of patients at risks of failure from two causes, and following a prescheduled programme allowing for informative interval-censoring mechanisms, we show that the proposed method results in more accurate coefficient estimates as compared to the simple imputation approach. We have implemented the method in the MIICD R package, available on the CRAN website. 相似文献
12.
We performed a simulation study comparing the statistical properties of the estimated log odds ratio from propensity scores analyses of a binary response variable, in which missing baseline data had been imputed using a simple imputation scheme (Treatment Mean Imputation), compared with three ways of performing multiple imputation (MI) and with a Complete Case analysis. MI that included treatment (treated/untreated) and outcome (for our analyses, outcome was adverse event [yes/no]) in the imputer's model had the best statistical properties of the imputation schemes we studied. MI is feasible to use in situations where one has just a few outcomes to analyze. We also found that Treatment Mean Imputation performed quite well and is a reasonable alternative to MI in situations where it is not feasible to use MI. Treatment Mean Imputation performed better than MI methods that did not include both the treatment and outcome in the imputer's model. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
13.
Rianne Margaretha Schouten Peter Lugtig Gerko Vink 《Journal of Statistical Computation and Simulation》2018,88(15):2909-2930
Missing data form a ubiquitous problem in scientific research, especially since most statistical analyses require complete data. To evaluate the performance of methods dealing with missing data, researchers perform simulation studies. An important aspect of these studies is the generation of missing values in a simulated, complete data set: the amputation procedure. We investigated the methodological validity and statistical nature of both the current amputation practice and a newly developed and implemented multivariate amputation procedure. We found that the current way of practice may not be appropriate for the generation of intuitive and reliable missing data problems. The multivariate amputation procedure, on the other hand, generates reliable amputations and allows for a proper regulation of missing data problems. The procedure has additional features to generate any missing data scenario precisely as intended. Hence, the multivariate amputation procedure is an efficient method to accurately evaluate missing data methodology. 相似文献
14.
Yunxi Zhang Ye Lin George Baum Karen M. Basen-Engquist Michael D. Swartz 《统计学通讯:模拟与计算》2013,42(8):2523-2537
ABSTRACTMissing data are commonly encountered in self-reported measurements and questionnaires. It is crucial to treat missing values using appropriate method to avoid bias and reduction of power. Various types of imputation methods exist, but it is not always clear which method is preferred for imputation of data with non-normal variables. In this paper, we compared four imputation methods: mean imputation, quantile imputation, multiple imputation, and quantile regression multiple imputation (QRMI), using both simulated and real data investigating factors affecting self-efficacy in breast cancer survivors. The results displayed an advantage of using multiple imputation, especially QRMI when data are not normal. 相似文献
15.
In longitudinal studies, nonlinear mixed-effects models have been widely applied to describe the intra- and the inter-subject variations in data. The inter-subject variation usually receives great attention and it may be partially explained by time-dependent covariates. However, some covariates may be measured with substantial errors and may contain missing values. We proposed a multiple imputation method, implemented by a Markov Chain Monte-Carlo method along with Gibbs sampler, to address the covariate measurement errors and missing data in nonlinear mixed-effects models. The multiple imputation method is illustrated in a real data example. Simulation studies show that the multiple imputation method outperforms the commonly used naive methods. 相似文献
16.
Gurprit Grover 《Journal of applied statistics》2015,42(4):817-827
Missing covariates data with censored outcomes put a challenge in the analysis of clinical data especially in small sample settings. Multiple imputation (MI) techniques are popularly used to impute missing covariates and the data are then analyzed through methods that can handle censoring. However, techniques based on MI are available to impute censored data also but they are not much in practice. In the present study, we applied a method based on multiple imputation by chained equations to impute missing values of covariates and also to impute censored outcomes using restricted survival time in small sample settings. The complete data were then analyzed using linear regression models. Simulation studies and a real example of CHD data show that the present method produced better estimates and lower standard errors when applied on the data having missing covariate values and censored outcomes than the analysis of the data having censored outcome but excluding cases with missing covariates or the analysis when cases with missing covariate values and censored outcomes were excluded from the data (complete case analysis). 相似文献
17.
Christopher Paul William M. Mason Daniel McCaffrey Sarah A. Fox 《Statistical Methods and Applications》2008,17(3):351-372
This article presents findings from a case study of different approaches to the treatment of missing data. Simulations based on data from the Los Angeles Mammography Promotion in Churches Program (LAMP) led the authors to the following cautionary conclusions about the treatment of missing data: (1) Automated selection of the imputation model in the use of full Bayesian multiple imputation can lead to unexpected bias in coefficients of substantive models. (2) Under conditions that occur in actual data, casewise deletion can perform less well than we were led to expect by the existing literature. (3) Relatively unsophisticated imputations, such as mean imputation and conditional mean imputation, performed better than the technical literature led us to expect. (4) To underscore points (1), (2), and (3), the article concludes that imputation models are substantive models, and require the same caution with respect to specificity and calculability. The research reported here was partially supported by National Institutes of Health, National Cancer Institute, R01 CA65879 (SAF). We thank Nicholas Wolfinger, Naihua Duan, John Adams, John Fox, and the anonymous referees for their thoughtful comments on earlier drafts. The responsibility for any remaining errors is ours alone. Benjamin Stein was exceptionally helpful in orchestrating the simulations at the labs of UCLA Social Science Computing. Michael Mitchell of the UCLA Academic Technology Services Statistical Consulting Group artfully created Fig. 1 using the Stata graphics language; we are most grateful. 相似文献
18.
Zhiping Qiu 《统计学通讯:理论与方法》2017,46(23):11575-11590
Missing covariate data are common in biomedical studies. In this article, by using the non parametric kernel regression technique, a new imputation approach is developed for the Cox-proportional hazard regression model with missing covariates. This method achieves the same efficiency as the fully augmented weighted estimators (Qi et al. 2005. Journal of the American Statistical Association, 100:1250) and has a simpler form. The asymptotic properties of the proposed estimator are derived and analyzed. The comparisons between the proposed imputation method and several other existing methods are conducted via a number of simulation studies and a mouse leukemia data. 相似文献
19.
Tomasz Burzykowski James Carpenter Corneel Coens Daniel Evans Lesley France Mike Kenward Peter Lane James Matcham David Morgan Alan Phillips James Roger Brian Sullivan Ian White Ly‐Mee Yu of the PSI Missing Data Expert Group 《Pharmaceutical statistics》2010,9(4):288-297
The Points to Consider Document on Missing Data was adopted by the Committee of Health and Medicinal Products (CHMP) in December 2001. In September 2007 the CHMP issued a recommendation to review the document, with particular emphasis on summarizing and critically appraising the pattern of drop‐outs, explaining the role and limitations of the ‘last observation carried forward’ method and describing the CHMP's cautionary stance on the use of mixed models. In preparation for the release of the updated guidance document, statisticians in the Pharmaceutical Industry held a one‐day expert group meeting in September 2008. Topics that were debated included minimizing the extent of missing data and understanding the missing data mechanism, defining the principles for handling missing data and understanding the assumptions underlying different analysis methods. A clear message from the meeting was that at present, biostatisticians tend only to react to missing data. Limited pro‐active planning is undertaken when designing clinical trials. Missing data mechanisms for a trial need to be considered during the planning phase and the impact on the objectives assessed. Another area for improvement is in the understanding of the pattern of missing data observed during a trial and thus the missing data mechanism via the plotting of data; for example, use of Kaplan–Meier curves looking at time to withdrawal. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
20.
M. C. Paik & R. L. Sacco 《Journal of the Royal Statistical Society. Series C, Applied statistics》2000,49(1):145-156
We consider methods for analysing matched case–control data when some covariates ( W ) are completely observed but other covariates ( X ) are missing for some subjects. In matched case–control studies, the complete-record analysis discards completely observed subjects if none of their matching cases or controls are completely observed. We investigate an imputation estimate obtained by solving a joint estimating equation for log-odds ratios of disease and parameters in an imputation model. Imputation estimates for coefficients of W are shown to have smaller bias and mean-square error than do estimates from the complete-record analysis. 相似文献