首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article we consider a control chart based on the sample variances of two quality characteristics. The points plotted on the chart correspond to the maximum value of these two statistics. The main reason to consider the proposed chart instead of the generalized variance | S | chart is its better diagnostic feature, that is, with the new chart it is easier to relate an out-of-control signal to the variables whose parameters have moved away from their in-control values. We study the control chart efficiency considering different shifts in the covariance matrix. In this way, we obtain the average run length (ARL) that measures the effectiveness of a control chart in detecting process shifts. The proposed chart always detects process disturbances faster than the generalized variance | S | chart. The same is observed when the size of the samples is variable, except in a few cases in which the size of the samples switches between small size and very large size.  相似文献   

2.
The memory-type adaptive and non-adaptive control charts are among the best control charts for detecting small-to-moderate changes in the process parameter(s). In this paper, we propose the Crosier CUSUM (CCUSUM), EWMA, adaptive CCUSUM (ACCUSUM) and adaptive EWMA (AEWMA) charts for efficiently monitoring the changes in the covariance matrix of a multivariate normal process without subgrouping. Using extensive Monte Carlo simulations, the length characteristics of these control charts are computed. It turns out that the ACCUSUM and AEWMA charts perform uniformly and substantially better than the CCUSUM and EWMA charts when detecting a range of shift sizes in the covariance matrix. Moreover, the AEWMA chart outperforms the ACCUSUM chart. A real dataset is used to explain the implementation of the proposed control charts.  相似文献   

3.
In this article, we propose the two control charts, i.e. the ‘VMAX Group Runs’ (VMAX-GR) and ‘VMAX Modified Group Runs’ (VMAX-MGR) control charts based on the bivariate normal processes, for monitoring the covariance matrix. The proposed charts give the faster detection of a process change and have better diagnostic feature. It is verified that the VMAX-GR and the VMAX-MGR charts give a significant reduction in the out-of-control ‘Average Run Length’ (ARL) in the zero state, as well as in the steady state, as compared to the synthetic control chart based on the VMAX statistic and the generalized variance |S| chart.  相似文献   

4.
Statistical quality control charts have been widely accepted as a potentially powerful process monitoring tool because of their excellent speed in tracking shifts in the underlying process parameter(s). In recent studies, auxiliary-information-based (AIB) control charts have shown superior run length performances than those constructed without using it. In this paper, a new double sampling (DS) control chart is constructed whose plotting-statistics requires information on the study variable and on any correlated auxiliary variable for efficiently monitoring the process mean, namely AIB DS chart. The AIB DS chart also encompasses the classical DS chart. We discuss in detail the construction, optimal design, run length profiles, and the performance evaluations of the proposed chart. It turns out that the AIB DS chart performs uniformly better than the DS chart when detecting different kinds of shifts in the process mean. It is also more sensitive than the classical synthetic and AIB synthetic charts when detecting a particular shift in the process mean. Moreover, with some realistic beliefs, the proposed chart outperforms the exponentially weighted moving average chart. An illustrative example is also presented to explain the working and implementation of the proposed chart.  相似文献   

5.
Nonparametric control charts are useful in statistical process control (SPC) when there is a lack of or limited knowledge about the underlying process distribution, especially when the process measurement is multivariate. This article develops a new multivariate SPC methodology for monitoring location parameter based on adapting a well-known nonparametric method, empirical likelihood (EL), to on-line sequential monitoring. The weighted version of EL ratio test is used to formulate the charting statistic by incorporating the exponentially weighted moving average control (EWMA) scheme, which results in a nonparametric counterpart of the classical multivariate EWMA (MEWMA). Some theoretical and numerical studies show that benefiting from using EL, the proposed chart possesses some favorable features. First, it is a data-driven scheme and thus is more robust to various multivariate non-normal data than the MEWMA chart under the in-control (IC) situation. Second, it is transformation-invariant and avoids the estimation of covariance matrix from the historical data by studentizing internally, and hence its IC performance is less deteriorated when the number of reference sample is small. Third, in comparison with the existing approaches, it is more efficient in detecting small and moderate shifts for multivariate non-normal process.  相似文献   

6.
This study presents a control chart for monitoring shifts in the covariance matrix of a multivariate normally distributed process. This chart combines the double sampling, variable sample size and variable sampling interval features, and is called the DSVSSI |S| chart. A Markov chain approach is developed to design the DSVSSI |S| chart, by minimizing the average time to signal (ATS), for a specified shift size in the covariance matrix. The DSVSSI |S| chart has a better ATS performance compared to other existing charts. An example is given to illustrate the operation of the DSVSSI |S| chart.  相似文献   

7.
For the univariate case, the R chart and the S 2 chart are the most common charts used for monitoring the process dispersion. With the usual sample size of 4 and 5, the R chart is slightly inferior to the S 2 chart in terms of efficiency in detecting process shifts. In this article, we show that for the multivariate case, the chart based on the standardized sample ranges, we call the RMAX chart, is substantially inferior in terms of efficiency in detecting shifts in the covariance matrix than the VMAX chart, which is based on the standardized sample variances. The user's familiarity with sample ranges is a point in favor of the RMAX chart. An example is presented to illustrate the application of the proposed chart.  相似文献   

8.
The combined EWMA-X chart is a commonly used tool for monitoring both large and small process shifts. However, this chart requires calculating and monitoring two statistics along with two sets of control limits. Thus, this study develops a single-featured EWMA-X (called SFEWMA-X) control chart which has the ability to simultaneously monitor both large and small process shifts using only one set of statistic and control limits. The proposed SFEWMA-X chart is further extended to monitoring the shifts in process standard deviation. A set of simulated data are used to demonstrate the proposed chart's superior performance in terms of average run length compared with that of the traditional charts. The experimental examples also show that the SFEWMA-X chart is neater and easier to visually interpret than the original EWMA-X chart.  相似文献   

9.
A control chart is an ever-popular tool for monitoring the production process. The early detection of a process shift, if any, is the desire of the quality control personnel. In this article, an effective alternative control charting procedure has been developed for the monitoring of exponentially distributed quality characteristic using the double moving average combined with EWMA statistic. The performance of the proposed control chart is examined for different combinations of the shift constant, the EWMA smoothing parameter, the moving average span, and the target in-control average run lengths. It has been observed that the proposed control chart is more efficient in the detection of process shifts as compared to control chart suggested by Khoo and Wang for the same purpose. The proposed control chart is illustrated for practical usage with the help of a synthetic and a real dataset.  相似文献   

10.
ABSTRACT

Profile monitoring is one of the new research areas in statistical process control. Most of the control charts in this area are designed with fixed sampling rate which makes the control chart slow in detecting small to moderate shifts. In order to improve the performance of the conventional fixed control charts, adaptive features are proposed in which, one or more design parameters vary during the process. In this paper the variable sample size feature of EWMA3 and MEWMA schemes are proposed for monitoring simple linear profiles. The EWMA3 method is based on the combination of three exponentially weighted moving average (EWMA) charts for monitoring three parameters of a simple linear profile separately and the Multivariate EWMA (MEWMA) chart is based on the using a single chart to monitor the coefficients and variance of a general linear profile. Also a two-sided control chart is proposed for monitoring the standard deviation in the EWMA3 method. The performance of the proposed charts is compared in terms of the average time to signal. Numerical examples show that using adaptive features increase the power of control charts in detecting the parameter shifts. Finally, the performance of the proposed variable sample size schemes is illustrated through a real case in the leather industry.  相似文献   

11.
ABSTRACT

Quality control charts have been widely recognized as a potentially powerful statistical process monitoring tool in statistical process control because of their superior ability in detecting shifts in the process parameters. Recently, auxiliary-information-based control charts have been proposed and shown to have excellent speed in detecting process shifts than those based without it. In this paper, we design a new synthetic control chart that is based on a statistic that utilizes information from both the study and auxiliary variables. The proposed synthetic chart encompasses the classical synthetic chart. The construction, optimal design, run length profiles, and the performance evaluation of the new chart are discussed in detail. It turns out that the proposed synthetic chart performs uniformly better than the classical synthetic chart when detecting different kinds of shifts in the process mean under both zero-state and steady-state run length performances. Moreover, with reasonable assumptions, the proposed chart also surpasses the exponentially weighted moving average control chart. An application with a simulated data set is also presented to explain the implementation of the proposed control chart.  相似文献   

12.
Statistical process control tools have been used routinely to improve process capabilities through reliable on-line monitoring and diagnostic processes. In the present paper, we propose a novel multivariate control chart that integrates a support vector machine (SVM) algorithm, a bootstrap method, and a control chart technique to improve multivariate process monitoring. The proposed chart uses as the monitoring statistic the predicted probability of class (PoC) values from an SVM algorithm. The control limits of SVM-PoC charts are obtained by a bootstrap approach. A simulation study was conducted to evaluate the performance of the proposed SVM–PoC chart and to compare it with other data mining-based control charts and Hotelling's T 2 control charts under various scenarios. The results showed that the proposed SVM–PoC charts outperformed other multivariate control charts in nonnormal situations. Further, we developed an exponential weighed moving average version of the SVM–PoC charts for increasing sensitivity to small shifts.  相似文献   

13.
Nonparametric control chart is useful when the underlying distribution is unknown, or is not likely to be normal. In this article, we provide a sequential rank-based nonparametric adaptive EWMA (NAE) control chart for detecting the persistent shift in the location parameter. This NAE chart is a self-starting scheme and thus can be used to monitor processes at the start-up stages rather than waiting for the accumulation of sufficiently large calibration samples. Moreover, we do not require any prior knowledge of the underlying distribution, and to prespecify any tuning parameter either. A Markov chain model is suggested to calibrate the run-length distribution of NAE, which is shown to have approximate tail probability as a geometric distribution. A simulation study demonstrates that the proposed control chart not only performs robustly for different distributions, but also is efficient in detecting various magnitude of shifts. A real-data example from manufacturing shows that it performs quite well in practical applications.  相似文献   

14.
A multivariate change point control chart based on data depth (CPDP) is considered for detecting shifts in either the mean vector, the covariance matrix, or both of the processes for Phase I. The proposed chart is preferable from a robustness point of view, has attractive detection performance, and can be especially useful in Phase I analysis setting, where there is limited information about the underlying process. Comparison results and an illustrative example show that our CPDP chart has great potential for Phase I analysis of multivariate individual observations. The application of CPDP chart is illustrated in a real data example.  相似文献   

15.
In this article, we provide a sequential rank-based dual nonparametric CUSUM (DNC) control chart for detecting arbitrary magnitude of shifts in the location parameter. It is a self-starting scheme and thus can be used to monitor processes at the start-up stages. Moreover, we do not require any prior knowledge of the underlying distribution. A simulation study demonstrates that the proposed control chart not only performs robustly for different distributions, but also is efficient in detecting various magnitudes of shifts. An illustrative example is given to introduce the implementation of our proposed DNC control chart. It is easy to construct and fast to compute.  相似文献   

16.
The Poisson GWMA (PGWMA) control chart is an extension model of Poisson EWMA chart. It is substantially sensitive to small process shifts for monitoring Poisson observations. Recently, some approaches have been proposed to modify EWMA charts with fast initial response (FIR) features. In this article, we employ these approaches in PGWMA charts and introduce a novel chart called Poisson double GWMA (PDGWMA) chart for comparison. Using simulation, various control schemes are designed and their average run lengths (ARLs) are computer and compared. It is shown that the PDGWMA chart is the first choice in detecting small shifts especially when the shifts are downward, and the PGWMA chart with adjusted time-varying control limits performs excellently in detecting great process shifts during the initial stage.  相似文献   

17.
In this article, we will present a control chart using normal transformation and generally weighted moving average (GWMA) statistic when the quality characteristic follows the exponential distribution. We will develop the necessary measures to monitor the mean of the process using GWMA statistic and analyze the performance using simulation. The average run lengths for monitoring process average are given for various process shifts. The performance of the proposed chart is examined and compared with the existing control chart. The proposed control chart is effective for the monitoring of small shifts in the mean process. The application of the proposed chart is illustrated with the help of simulated data.  相似文献   

18.
A variable sampling interval (VSI) feature is introduced to the multivariate synthetic generalized sample variance |S| control chart. This multivariate synthetic control chart is a combination of the |S| sub-chart and the conforming run length sub-chart. The VSI feature enhances the performance of the multivariate synthetic control chart. The comparative results show that the VSI multivariate synthetic control chart performs better than other types of multivariate control charts for detecting shifts in the covariance matrix of a multivariate normally distributed process. An example is given to illustrate the operation of the VSI multivariate synthetic chart.  相似文献   

19.
In this paper, two control charts based on the generalized linear test (GLT) and contingency table are proposed for Phase-II monitoring of multivariate categorical processes. The performances of the proposed methods are compared with the exponentially weighted moving average-generalized likelihood ratio test (EWMA-GLRT) control chart proposed in the literature. The results show the better performance of the proposed control charts under moderate and large shifts. Moreover, a new scheme is proposed to identify the parameter responsible for an out-of-control signal. The performance of the proposed diagnosing procedure is evaluated through some simulation experiments.  相似文献   

20.
Recent literature provides many computational and modeling approaches for covariance matrices estimation in a penalized Gaussian graphical models but relatively little study has been carried out on the choice of the tuning parameter. This paper tries to fill this gap by focusing on the problem of shrinkage parameter selection when estimating sparse precision matrices using the penalized likelihood approach. Previous approaches typically used K-fold cross-validation in this regard. In this paper, we first derived the generalized approximate cross-validation for tuning parameter selection which is not only a more computationally efficient alternative, but also achieves smaller error rate for model fitting compared to leave-one-out cross-validation. For consistency in the selection of nonzero entries in the precision matrix, we employ a Bayesian information criterion which provably can identify the nonzero conditional correlations in the Gaussian model. Our simulations demonstrate the general superiority of the two proposed selectors in comparison with leave-one-out cross-validation, 10-fold cross-validation and Akaike information criterion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号