首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Minimum distance estimation on the linear regression model with independent errors is known to yield an efficient and robust estimator. We extend the method to the model with strong mixing errors and obtain an estimator of the vector of the regression parameters. The goal of this article is to demonstrate the proposed estimator still retains efficiency and robustness. To that end, this article investigates asymptotic distributional properties of the proposed estimator and compares it with other estimators. The efficiency and the robustness of the proposed estimator are empirically shown, and its superiority over the other estimators is established.  相似文献   

2.
We present a new approach to regression function estimation in which a non-parametric regression estimator is guided by a parametric pilot estimate with the aim of reducing the bias. New classes of parametrically guided kernel weighted local polynomial estimators are introduced and formulae for asymptotic expectation and variance, hence approximated mean squared error and mean integrated squared error, are derived. It is shown that the new classes of estimators have the very same large sample variance as the estimators in the standard non-parametric setting, while there is substantial room for reducing the bias if the chosen parametric pilot function belongs to a wide neighbourhood around the true regression line. Bias reduction is discussed in light of examples and simulations.  相似文献   

3.
Efficiency and robustness are two fundamental concepts in parametric estimation problems. It was long thought that there was an inherent contradiction between the aims of achieving robustness and efficiency; that is, a robust estimator could not be efficient and vice versa. It is now known that the minimum Hellinger distance approached introduced by Beran [R. Beran, Annals of Statistics 1977;5:445–463] is one way of reconciling the conflicting concepts of efficiency and robustness. For parametric models, it has been shown that minimum Hellinger estimators achieve efficiency at the model density and simultaneously have excellent robustness properties. In this article, we examine the application of this approach in two semiparametric models. In particular, we consider a two‐component mixture model and a two‐sample semiparametric model. In each case, we investigate minimum Hellinger distance estimators of finite‐dimensional Euclidean parameters of particular interest and study their basic asymptotic properties. Small sample properties of the proposed estimators are examined using a Monte Carlo study. The results can be extended to semiparametric models of general form as well. The Canadian Journal of Statistics 37: 514–533; 2009 © 2009 Statistical Society of Canada  相似文献   

4.
Linear regression models are useful statistical tools to analyze data sets in different fields. There are several methods to estimate the parameters of a linear regression model. These methods usually perform under normally distributed and uncorrelated errors. If error terms are correlated the Conditional Maximum Likelihood (CML) estimation method under normality assumption is often used to estimate the parameters of interest. The CML estimation method is required a distributional assumption on error terms. However, in practice, such distributional assumptions on error terms may not be plausible. In this paper, we propose to estimate the parameters of a linear regression model with autoregressive error term using Empirical Likelihood (EL) method, which is a distribution free estimation method. A small simulation study is provided to evaluate the performance of the proposed estimation method over the CML method. The results of the simulation study show that the proposed estimators based on EL method are remarkably better than the estimators obtained from CML method in terms of mean squared errors (MSE) and bias in almost all the simulation configurations. These findings are also confirmed by the results of the numerical and real data examples.  相似文献   

5.
Two common kernel-based methods for non-parametric regression estimation suffer from well-known drawbacks when the design is random. The Gasser-Müller estimator is inadmissible due to its high variance while the Nadaraya-Watson estimator has zero asymptotic efficiency because of poor bias behavior. Under asymptotic consideration, the local linear estimator avoids these two drawbacks of kernel estimators and achieves minimax optimality. However, when based on compact support kernels its finite sample behavior is disappointing because sudden kinks may show up in the estimate.

This paper proposes a modification of the kernel estimator, called the binned convolution estimator leading to a fast O(n) method. Provided the design density is continously differentiable and the conditional fourth moments exist the binned convolution estimator has asymptotic properties identical with those of the local linear estimator.  相似文献   

6.
文章研究了半参数变系数EV模型在线性约束条件下的估计和检验问题,当响应变量缺失、非参数部分协变量带有测量误差时,利用局部纠偏的Profile最小二乘估计、Lagrange乘子方法和借补技术构造了回归模型参数分量两类纠偏约束估计量。此外,为了检验线性约束条件,构造了借补的Profile Lagrange乘子检验统计量,并通过蒙特卡洛数值模拟验证估计量和检验统计量的有效性。  相似文献   

7.
Abstract.  In this paper, a two-stage estimation method for non-parametric additive models is investigated. Differing from Horowitz and Mammen's two-stage estimation, our first-stage estimators are designed not only for dimension reduction but also as initial approximations to all of the additive components. The second-stage estimators are obtained by using one-dimensional non-parametric techniques to refine the first-stage ones. From this procedure, we can reveal a relationship between the regression function spaces and convergence rate, and then provide estimators that are optimal in the sense that, better than the usual one-dimensional mean-squared error (MSE) of the order n −4/5 , the MSE of the order n − 1 can be achieved when the underlying models are actually parametric. This shows that our estimation procedure is adaptive in a certain sense. Also it is proved that the bandwidth that is selected by cross-validation depends only on one-dimensional kernel estimation and maintains the asymptotic optimality. Simulation studies show that the new estimators of the regression function and all components outperform the existing estimators, and their behaviours are often similar to that of the oracle estimator.  相似文献   

8.
In this study, the performance of the estimators proposed in the presence of multicollinearity in the linear regression model with heteroscedastic or correlated or both error terms is investigated under the matrix mean square error criterion. Structures of the autocorrelated error terms are given and a Monte Carlo simulation study is conducted to examine the relative efficiency of the estimators against each other.  相似文献   

9.
A Semi-parametric Regression Model with Errors in Variables   总被引:4,自引:0,他引:4  
Abstract.  In this paper, we consider a partial linear regression model with measurement errors in possibly all the variables. We use a method of moments and deconvolution to construct a new class of parametric estimators together with a non-parametric kernel estimator. Strong convergence, optimal rate of weak convergence and asymptotic normality of the estimators are investigated.  相似文献   

10.
Optimal Change-point Estimation in Inverse Problems   总被引:2,自引:0,他引:2  
We develop a method of estimating a change-point of an otherwise smooth function in the case of indirect noisy observations. As two paradigms we consider deconvolution and non-parametric errors-in-variables regression. In a similar manner to well-established methods for estimating change-points in non-parametric regression, we look essentially at the difference of one-sided kernel estimators. Because of the indirect nature of the observations we employ deconvoluting kernels. We obtain an estimate of the change-point by the extremal point of the differences between these two-sided kernel estimators. We derive rates of convergence for this estimator. They depend on the degree of ill-posedness of the problem, which derives from the smoothness of the error density. Analysing the Hellinger modulus of continuity of the problem we show that these rates are minimax  相似文献   

11.
This article extends the linear stochastic frontier model proposed by Aigner, Lovell, and Schmidt to a semiparametric frontier model in which the functional form of the production frontier is unspecified and the distributions of the composite error terms are of known form. Pseudolikelihood estimators of the parameters characterizing the two error terms of the model are constructed based on kernel estimation of the conditional mean function. The Monte Carlo results show that the proposed estimators perform well in finite samples. An empirical application is presented. Extensions to a partially linear frontier function and to more flexible one-sided error distributions than the half-normal are discussed  相似文献   

12.
In this paper, we consider the shrinkage and penalty estimation procedures in the linear regression model with autoregressive errors of order p when it is conjectured that some of the regression parameters are inactive. We develop the statistical properties of the shrinkage estimation method including asymptotic distributional biases and risks. We show that the shrinkage estimators have a significantly higher relative efficiency than the classical estimator. Furthermore, we consider the two penalty estimators: least absolute shrinkage and selection operator (LASSO) and adaptive LASSO estimators, and numerically compare their relative performance with that of the shrinkage estimators. A Monte Carlo simulation experiment is conducted for different combinations of inactive predictors and the performance of each estimator is evaluated in terms of the simulated mean-squared error. This study shows that the shrinkage estimators are comparable to the penalty estimators when the number of inactive predictors in the model is relatively large. The shrinkage and penalty methods are applied to a real data set to illustrate the usefulness of the procedures in practice.  相似文献   

13.
Many sampling problems from multiple populations can be considered under the semiparametric framework of the biased, or weighted, sampling model. Included under this framework is logistic regression under case–control sampling. For any model, atypical observations can greatly influence the maximum likelihood estimate of the parameters. Several robust alternatives have been proposed for the special case of logistic regression. However, some current techniques can exhibit poor behavior in many common situations. In this paper a new family of procedures are constructed to estimate the parameters in the semiparametric biased sampling model. The procedures incorporate a minimum distance approach, but are instead based on characteristic functions. The estimators can also be represented as the minimizers of quadratic forms in simple residuals, thus yielding straightforward computation. For the case of logistic regression, the resulting estimators are shown to be competitive with the existing robust approaches in terms of both robustness and efficiency, while maintaining affine equivariance. The approach is developed under the case–control sampling scheme, yet is shown to be applicable under prospective sampling logistic regression as well.  相似文献   

14.
Abstract.  A new semiparametric method for density deconvolution is proposed, based on a model in which only the ratio of the unconvoluted to convoluted densities is specified parametrically. Deconvolution results from reweighting the terms in a standard kernel density estimator, where the weights are defined by the parametric density ratio. We propose that in practice, the density ratio be modelled on the log-scale as a cubic spline with a fixed number of knots. Parameter estimation is based on maximization of a type of semiparametric likelihood. The resulting asymptotic properties for our deconvolution estimator mirror the convergence rates in standard density estimation without measurement error when attention is restricted to our semiparametric class of densities. Furthermore, numerical studies indicate that for practical sample sizes our weighted kernel estimator can provide better results than the classical non-parametric kernel estimator for a range of densities outside the specified semiparametric class.  相似文献   

15.
A simulation study of the binomial-logit model with correlated random effects is carried out based on the generalized linear mixed model (GLMM) methodology. Simulated data with various numbers of regression parameters and different values of the variance component are considered. The performance of approximate maximum likelihood (ML) and residual maximum likelihood (REML) estimators is evaluated. For a range of true parameter values, we report the average biases of estimators, the standard error of the average bias and the standard error of estimates over the simulations. In general, in terms of bias, the two methods do not show significant differences in estimating regression parameters. The REML estimation method is slightly better in reducing the bias of variance component estimates.  相似文献   

16.
This paper studies robust estimation of multivariate regression model using kernel weighted local linear regression. A robust estimation procedure is proposed for estimating the regression function and its partial derivatives. The proposed estimators are jointly asymptotically normal and attain nonparametric optimal convergence rate. One-step approximations to the robust estimators are introduced to reduce computational burden. The one-step local M-estimators are shown to achieve the same efficiency as the fully iterative local M-estimators as long as the initial estimators are good enough. The proposed estimators inherit the excellent edge-effect behavior of the local polynomial methods in the univariate case and at the same time overcome the disadvantages of the local least-squares based smoothers. Simulations are conducted to demonstrate the performance of the proposed estimators. Real data sets are analyzed to illustrate the practical utility of the proposed methodology. This work was supported by the National Natural Science Foundation of China (Grant No. 10471006).  相似文献   

17.
Problems with truncated data arise frequently in survival analyses and reliability applications. The estimation of the density function of the lifetimes is often of interest. In this article, the estimation of density function by the kernel method is considered, when truncated data are showing some kind of dependence. We apply the strong Gaussian approximation technique to study the strong uniform consistency for kernel estimators of the density function under a truncated dependent model. We also apply the strong approximation results to study the integrated square error properties of the kernel density estimators under the truncated dependent scheme.  相似文献   

18.
In this article, we propose a class of partial deconvolution kernel estimators for the nonparametric regression function when some covariates are measured with error and some are not. The estimation procedure combines the classical kernel methodology and the deconvolution kernel technique. According to whether the measurement error is ordinarily smooth or supersmooth, we establish the optimal local and global convergence rates for these proposed estimators, and the optimal bandwidths are also identified. Furthermore, lower bounds for the convergence rates of all possible estimators for the nonparametric regression functions are developed. It is shown that, in both the super and ordinarily smooth cases, the convergence rates of the proposed partial deconvolution kernel estimators attain the lower bound. The Canadian Journal of Statistics 48: 535–560; 2020 © 2020 Statistical Society of Canada  相似文献   

19.
Abstract

Semi-functional linear regression models are important in practice. In this paper, their estimation is discussed when function-valued and real-valued random variables are all measured with additive error. By means of functional principal component analysis and kernel smoothing techniques, the estimators of the slope function and the non parametric component are obtained. To account for errors in variables, deconvolution is involved in the construction of a new class of kernel estimators. The convergence rates of the estimators of the unknown slope function and non parametric component are established under suitable norm and conditions. Simulation studies are conducted to illustrate the finite sample performance of our method.  相似文献   

20.
This paper compares minimum distance estimation with best linear unbiased estimation to determine which technique provides the most accurate estimates for location and scale parameters as applied to the three parameter Pareto distribution. Two minimum distance estimators are developed for each of the three distance measures used (Kolmogorov, Cramer‐von Mises, and Anderson‐Darling) resulting in six new estimators. For a given sample size 6 or 18 and shape parameter 1(1)4, the location and scale parameters are estimated. A Monte Carlo technique is used to generate the sample sets. The best linear unbiased estimator and the six minimum distance estimators provide parameter estimates based on each sample set. These estimates are compared using mean square error as the evaluation tool. Results show that the best linear unbaised estimator provided more accurate estimates of location and scale than did the minimum estimators tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号