首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sampson (1976, 1978) has considered applications of the standard symmetric multivariate normal (SSMN) distribution and the estimation of its equi-correlation coefficient, ρ. Tests for ρ are considered here. The likelihood ratio test suffers from several theoretical and practical shortcomings. We propose the locally most powerful (LMP) test which is globally (one-sided) unbiased, very simple to compute and is based on the best natural unbiased estimator of ρ. Exact null and non-null distributions of the test statistic are presented and percentage points are given. Statistical curvature (Efron, 1975) indicates that its performance improves with mk (sample size × dimension) while exact power computations show that even for reasonably small values of mk the performance is quite encouraging. Recalling Brown's (1971) cautions we establish by local comparison with the LMP similar test for ρ in the SMN (Rao, 1973) distribution, that here the additional information on the mean and variance is quite worthwhile.  相似文献   

2.
Durairajan and Raman (1996 a, b) studied the robustness of Locally most powerful invariant (LMPI) tests for compound normal model in control and treatment populations. In the present paper, the Locally most powerful (LMP) tests are constructed for no contamination in normal mixture model through testing the parameter of mixture of distributions and the mixing proportion. The expected performance of LMP tests are compared using Efron's Statistical Curvature on the lines of Sen Gupta and Pal (1991). The Locally most powerful similar (LMPS) tests for the equality of control and treatment populations in the presence of nuisance parameters are also constructed. Further, the null and non-null distributions of the test statistics are derived and some power computations are made. Received: September 1, 1999; revised version: August 31, 2000  相似文献   

3.
This paper considers the problem of testing for nonzero values of the equicorrelation coefficient of a standard symmetric multivariate normal distribution. Recently, SenGupta (1987) proposed a locally best test. We construct a beta-optimal test and present selected one and five percent critical values. An empirical power comparison of SenGupta's test with two versions of the beta-optimal test and the power envelope shows the relative strengths of the three tests. It also allows us to assess and confirm Efron's (1975) rule of when to question the use of a locally best test, at least for this testing problem. On the basis of these results, we argue that the two beta-optimal tests can be considered as approximately uniformly most powerful tests, at least at the five percent significance level.  相似文献   

4.
Let X =(x)ij=(111, …, X,)T, i = l, …n, be an n X random matrix having multivariate symmetrical distributions with parameters μ, Σ. The p-variate normal with mean μ and covariance matrix is a member of this family. Let be the squared multiple correlation coefficient between the first and the succeeding p1 components, and let p2 = + be the squared multiple correlation coefficient between the first and the remaining p1 + p2 =p – 1 components of the p-variate normal vector. We shall consider here three testing problems for multivariate symmetrical distributions. They are (A) to test p2 =0 against; (B) to test against =0, 0; (C) to test against p2 =0, We have shown here that for problem (A) the uniformly most powerful invariant (UMPI) and locally minimax test for the multivariate normal is UMPI and is locally minimax as p2 0 for multivariate symmetrical distributions. For problem (B) the UMPI and locally minimax test is UMPI and locally minimax as for multivariate symmetrical distributions. For problem (C) the locally best invariant (LBI) and locally minimax test for the multivariate normal is also LBI and is locally minimax as for multivariate symmetrical distributions.  相似文献   

5.
Previously proposed linear signed rank tests for multivariate location are not invariant under linear transformations of the observations, The asymptotic relative efficiencies of the tests 2 with respect to Hotelling's T2test depend on the direction of shift and the covariance matrix of the alternative distributions. For distributions with highly correlated components, the efficiencies of some of these tests can be arbitrarily low; they approach zero for certain multivariate normal alternatives, This article proposes a transformation of the data to be performed prior to standard linear signed rank tests, The resulting procedures have attractive power and efficiency properties compared to the original tests, In particular, for elliptically symmetric contiguous alternafives, the efficiencies of the new tests equal those of corresponding univariate linear signed rank tests with respect to the t test.  相似文献   

6.
Nonparametric regression models are often used to check or suggest a parametric model. Several methods have been proposed to test the hypothesis of a parametric regression function against an alternative smoothing spline model. Some tests such as the locally most powerful (LMP) test by Cox et al. (Cox, D., Koh, E., Wahba, G. and Yandell, B. (1988). Testing the (parametric) null model hypothesis in (semiparametric) partial and generalized spline models. Ann. Stat., 16, 113–119.), the generalized maximum likelihood (GML) ratio test and the generalized cross validation (GCV) test by Wahba (Wahba, G. (1990). Spline models for observational data. CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM.) were developed from the corresponding Bayesian models. Their frequentist properties have not been studied. We conduct simulations to evaluate and compare finite sample performances. Simulation results show that the performances of these tests depend on the shape of the true function. The LMP and GML tests are more powerful for low frequency functions while the GCV test is more powerful for high frequency functions. For all test statistics, distributions under the null hypothesis are complicated. Computationally intensive Monte Carlo methods can be used to calculate null distributions. We also propose approximations to these null distributions and evaluate their performances by simulations.  相似文献   

7.
In this article, we consider the problem of comparing several multivariate normal mean vectors when the covariance matrices are unknown and arbitrary positive definite matrices. We propose a parametric bootstrap (PB) approach and develop an approximation to the distribution of the PB pivotal quantity for comparing two mean vectors. This approximate test is shown to be the same as the invariant test given in [Krishnamoorthy and Yu, Modified Nel and Van der Merwe test for the multivariate Behrens–Fisher problem, Stat. Probab. Lett. 66 (2004), pp. 161–169] for the multivariate Behrens–Fisher problem. Furthermore, we compare the PB test with two existing invariant tests via Monte Carlo simulation. Our simulation studies show that the PB test controls Type I error rates very satisfactorily, whereas other tests are liberal especially when the number of means to be compared is moderate and/or sample sizes are small. The tests are illustrated using an example.  相似文献   

8.
This paper presents some powerful omnibus tests for multivariate normality based on the likelihood ratio and the characterizations of the multivariate normal distribution. The power of the proposed tests is studied against various alternatives via Monte Carlo simulations. Simulation studies show our tests compare well with other powerful tests including multivariate versions of the Shapiro–Wilk test and the Anderson–Darling test.  相似文献   

9.
For the models given V = v (a common random stress), X and Y are independently exponentially distributed with failure rates λ1and λ2v, testing H0λ1λ2using a random ‘paired’ sample is considered. It is shown that a uniformly most powerful invariant test does not exist even for one sided alternatives; locally most powerful invariant tests are derived and compared with existing procedures. The method is illustrated with reliability data. Finally, the robustness of the tests when the relationships of the failure rates to V is more complex are established.  相似文献   

10.
In this paper we obtain asymptotic expansions, up to order n−1/2 and under a sequence of Pitman alternatives, for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in the class of symmetric linear regression models. This is a wide class of models which encompasses the t model and several other symmetric distributions with longer-than normal tails. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters. Furthermore, in order to compare the finite-sample performance of these tests in this class of models, Monte Carlo simulations are presented. An empirical application to a real data set is considered for illustrative purposes.  相似文献   

11.
We propose a multivariate extension of the univariate chi-squared normality test. Using a known result for the distribution of quadratic forms in normal variables, we show that the proposed test statistic has an approximated chi-squared distribution under the null hypothesis of multivariate normality. As in the univariate case, the new test statistic is based on a comparison of observed and expected frequencies for specified events in sample space. In the univariate case, these events are the standard class intervals, but in the multivariate extension we propose these become hyper-ellipsoidal annuli in multivariate sample space. We assess the performance of the new test using Monte Carlo simulation. Keeping the type I error rate fixed, we show that the new test has power that compares favourably with other standard normality tests, though no uniformly most powerful test has been found. We recommend the new test due to its competitive advantages.  相似文献   

12.
SenGupta (1987) proposed a locally most powerful test which is globally (one sided) unbiased, and an estimator of p, the equicorrelation coefficient of a standard symmetric multivariate normal (SSMN) distribution. Here we use the idea in Williams (1984) to illustrate the construction and use of ancillary statistics to make inference about p. The test and confidence intervals based on this construction are conditionally optimal.  相似文献   

13.
Abstract

The problem of testing Rayleigh distribution against exponentiality, based on a random sample of observations is considered. This problem arises in survival analysis, when testing a linearly increasing hazard function against a constant hazard function. It is shown that for this problem the most powerful invariant test is equivalent to the “ratio of maximized likelihoods” (RML) test. However, since the two families are separate, the RML test statistic does not have the usual asymptotic chi-square distribution. Normal and saddlepoint approximations to the distribution of the RML test statistic are derived. Simulations show that saddlepoint approximation is more accurate than the normal approximation, especially for tail probabilities that are the main values of interest in hypothesis testing.  相似文献   

14.
The asymptotic distributions of two tests for sphericity:the locally most powerful invariant test and the likelihood ratio test are derived under the general alternaties ∑?σ2 I. The powers of these two tests are then compared when the data are from a trivariate normal population. The bootstrap method is also used to obtain the powers and the powers obtained by this method agree with those from the asymptotic distributions.  相似文献   

15.
The Shapiro–Francia (SF) normality test is an important test in statistical modelling. However, little has been done by researchers to compare the performance of this test to other normality tests. This paper therefore measures the performance of the SF and other normality tests by studying the distribution of their p-values. For the purpose of this study, we selected eight well-known normality tests to compare with the SF test: (i) Kolmogorov–Smirnov (KS), (ii) Anderson–Darling (AD), (iii) Cramer von Mises (CM), (iv) Lilliefors (LF), (v) Shapiro–Wilk (SW), (vi) Pearson chi-square (PC), (vii) Jarque– Bera (JB) and (viii) D'Agostino (DA). The distribution of p-values of these normality tests were obtained by generating data from normal distribution and well-known symmetric non-normal distribution at various sample sizes (small, medium and large). Our simulation results showed that the SF normality test was the best test statistic in detecting deviation from normality among the nine tests considered at all sample sizes.  相似文献   

16.
Liu and Singh (1993, 2006) introduced a depth‐based d‐variate extension of the nonparametric two sample scale test of Siegel and Tukey (1960). Liu and Singh (2006) generalized this depth‐based test for scale homogeneity of k ≥ 2 multivariate populations. Motivated by the work of Gastwirth (1965), we propose k sample percentile modifications of Liu and Singh's proposals. The test statistic is shown to be asymptotically normal when k = 2, and compares favorably with Liu and Singh (2006) if the underlying distributions are either symmetric with light tails or asymmetric. In the case of skewed distributions considered in this paper the power of the proposed tests can attain twice the power of the Liu‐Singh test for d ≥ 1. Finally, in the k‐sample case, it is shown that the asymptotic distribution of the proposed percentile modified Kruskal‐Wallis type test is χ2 with k ? 1 degrees of freedom. Power properties of this k‐sample test are similar to those for the proposed two sample one. The Canadian Journal of Statistics 39: 356–369; 2011 © 2011 Statistical Society of Canada  相似文献   

17.
We introduce the 2nd-power skewness and kurtosis, which are interesting alternatives to the classical Pearson's skewness and kurtosis, called 3rd-power skewness and 4th-power kurtosis in our terminology. We use the sample 2nd-power skewness and kurtosis to build a powerful test of normality. This test can also be derived as Rao's score test on the asymmetric power distribution, which combines the large range of exponential tail behavior provided by the exponential power distribution family with various levels of asymmetry. We find that our test statistic is asymptotically chi-squared distributed. We also propose a modified test statistic, for which we show numerically that the distribution can be approximated for finite sample sizes with very high precision by a chi-square. Similarly, we propose a directional test based on sample 2nd-power kurtosis only, for the situations where the true distribution is known to be symmetric. Our tests are very similar in spirit to the famous Jarque–Bera test, and as such are also locally optimal. They offer the same nice interpretation, with in addition the gold standard power of the regression and correlation tests. An extensive empirical power analysis is performed, which shows that our tests are among the most powerful normality tests. Our test is implemented in an R package called PoweR.  相似文献   

18.
Tests for linear hypotheses about fixed effects in general balanced normal mixed classification models are considered. In complete families similar ANOVA tests are shown to be uniformly most powerful invariant unbiased. In the general case unbiased tests of BABTLETT-Scheffé type are developed and some properties are discussed.  相似文献   

19.
The importance of the normal distribution for fitting continuous data is well known. However, in many practical situations data distribution departs from normality. For example, the sample skewness and the sample kurtosis are far away from 0 and 3, respectively, which are nice properties of normal distributions. So, it is important to have formal tests of normality against any alternative. D'Agostino et al. [A suggestion for using powerful and informative tests of normality, Am. Statist. 44 (1990), pp. 316–321] review four procedures Z 2(g 1), Z 2(g 2), D and K 2 for testing departure from normality. The first two of these procedures are tests of normality against departure due to skewness and kurtosis, respectively. The other two tests are omnibus tests. An alternative to the normal distribution is a class of skew-normal distributions (see [A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Statist. 12 (1985), pp. 171–178]). In this paper, we obtain a score test (W) and a likelihood ratio test (LR) of goodness of fit of the normal regression model against the skew-normal family of regression models. It turns out that the score test is based on the sample skewness and is of very simple form. The performance of these six procedures, in terms of size and power, are compared using simulations. The level properties of the three statistics LR, W and Z 2(g 1) are similar and close to the nominal level for moderate to large sample sizes. Also, their power properties are similar for small departure from normality due to skewness (γ1≤0.4). Of these, the score test statistic has a very simple form and computationally much simpler than the other two statistics. The LR statistic, in general, has highest power, although it is computationally much complex as it requires estimates of the parameters under the normal model as well as those under the skew-normal model. So, the score test may be used to test for normality against small departure from normality due to skewness. Otherwise, the likelihood ratio statistic LR should be used as it detects general departure from normality (due to both skewness and kurtosis) with, in general, largest power.  相似文献   

20.
ABSTRACT.  In this paper, we develop an approximation for the most powerful invariant test of one location-scale family against another one. The approach is based on the Laplace method for integrals and yields a very accurate approximation of the density of a maximal invariant. Moreover, it can be applied to a much wider set of pairs of densities than previously possible. Many examples are worked out. The resulting test is easy to compute and its power is shown to be very close to that of the best test. By using versions of the Laplace method, the approach is extended to goodness-of-fit tests for residuals in regression and to some multivariate distributions. A small simulation study confirms the theoretical results. An example concludes the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号