首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we propose a new goodness-of-fit test for Type I or Type II censored samples from a completely specified distribution. This test is a generalization of Michael's test for censored data, which is based on the empirical distribution and a variance stabilizing transformation. Using Monte Carlo methods, the distributions of the test statistics are analyzed under the null hypothesis. Tables of quantiles of these statistics are also provided. The power of the proposed test is studied and compared to that of other well-known tests also using simulation. The proposed test is more powerful in most of the considered cases. Acceptance regions for the PP, QQ, and Michael's stabilized probability plots are derived, which enable one to visualize which data contribute to the decision of rejecting the null hypothesis. Finally, an application in quality control is presented as illustration.  相似文献   

2.
The comparative powers of six discrete goodness-of-fit test statistics for a uniform null distribution against a variety of fully specified alternative distributions are discussed. The results suggest that the test statistics based on the empirical distribution function for ordinal data (Kolmogorov–Smirnov, Cramér–von Mises, and Anderson–Darling) are generally more powerful for trend alternative distributions. The test statistics for nominal (Pearson's chi-square and the nominal Kolmogorov–Smirnov) and circular data (Watson's test statistic) are shown to be generally more powerful for the investigated triangular (∨), flat (or platykurtic type), sharp (or leptokurtic type), and bimodal alternative distributions.  相似文献   

3.
The assessment of overall homogeneity of time‐to‐event curves is a key element in survival analysis in biomedical research. The currently commonly used testing methods, e.g. log‐rank test, Wilcoxon test, and Kolmogorov–Smirnov test, may have a significant loss of statistical testing power under certain circumstances. In this paper we propose a new testing method that is robust for the comparison of the overall homogeneity of survival curves based on the absolute difference of the area under the survival curves using normal approximation by Greenwood's formula. Monte Carlo simulations are conducted to investigate the performance of the new testing method compared against the log‐rank, Wilcoxon, and Kolmogorov–Smirnov tests under a variety of circumstances. The proposed new method has robust performance with greater power to detect the overall differences than the log‐rank, Wilcoxon, and Kolmogorov–Smirnov tests in many scenarios in the simulations. Furthermore, the applicability of the new testing approach is illustrated in a real data example from a kidney dialysis trial. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, the maximum likelihood (ML) and Bayes, by using Markov chain Monte Carlo (MCMC), methods are considered to estimate the parameters of three-parameter modified Weibull distribution (MWD(β, τ, λ)) based on a right censored sample of generalized order statistics (gos). Simulation experiments are conducted to demonstrate the efficiency of the proposed methods. Some comparisons are carried out between the ML and Bayes methods by computing the mean squared errors (MSEs), Akaike's information criteria (AIC) and Bayesian information criteria (BIC) of the estimates to illustrate the paper. Three real data sets from Weibull(α, β) distribution are introduced and analyzed using the MWD(β, τ, λ) and also using the Weibull(α, β) distribution. A comparison is carried out between the mentioned models based on the corresponding Kolmogorov–Smirnov (KS) test statistic, {AIC and BIC} to emphasize that the MWD(β, τ, λ) fits the data better than the other distribution. All parameters are estimated based on type-II censored sample, censored upper record values and progressively type-II censored sample which are generated from the real data sets.  相似文献   

5.
The authors propose new rank statistics for testing the white noise hypothesis in a time series. These statistics are Cramér‐von Mises and Kolmogorov‐Smirnov functionals of an empirical distribution function whose mean is related to a serial version of Kendall's tau through a linear transform. The authors determine the asymptotic behaviour of the underlying serial process and the large‐sample distribution of the proposed statistics under the null hypothesis of white noise. They also present simulation results showing the power of their tests.  相似文献   

6.
There are several statistical hypothesis tests available for assessing normality assumptions, which is an a priori requirement for most parametric statistical procedures. The usual method for comparing the performances of normality tests is to use Monte Carlo simulations to obtain point estimates for the corresponding powers. The aim of this work is to improve the assessment of 9 normality hypothesis tests. For that purpose, random samples were drawn from several symmetric and asymmetric nonnormal distributions and Monte Carlo simulations were carried out to compute confidence intervals for the power achieved, for each distribution, by two of the most usual normality tests, Kolmogorov–Smirnov with Lilliefors correction and Shapiro–Wilk. In addition, the specificity was computed for each test, again resorting to Monte Carlo simulations, taking samples from standard normal distributions. The analysis was then additionally extended to the Anderson–Darling, Cramer-Von Mises, Pearson chi-square Shapiro–Francia, Jarque–Bera, D'Agostino and uncorrected Kolmogorov–Smirnov tests by determining confidence intervals for the areas under the receiver operating characteristic curves. Simulations were performed to this end, wherein for each sample from a nonnormal distribution an equal-sized sample was taken from a normal distribution. The Shapiro–Wilk test was seen to have the best global performance overall, though in some circumstances the Shapiro–Francia or the D'Agostino tests offered better results. The differences between the tests were not as clear for smaller sample sizes. Also to be noted, the SW and KS tests performed generally quite poorly in distinguishing between samples drawn from normal distributions and t Student distributions.  相似文献   

7.
We propose new tests of the martingale hypothesis based on generalized versions of the Kolmogorov–Smirnov and Cramér–von Mises tests. The tests are distribution-free and allow for a weak drift in the null model. The methods do not require either smoothing parameters or bootstrap resampling for their implementation and so are well suited to practical work. The article develops limit theory for the tests under the null and shows that the tests are consistent against a wide class of nonlinear, nonmartingale processes. Simulations show that the tests have good finite sample properties in comparison with other tests particularly under conditional heteroscedasticity and mildly explosive alternatives. An empirical application to major exchange rate data finds strong evidence in favor of the martingale hypothesis, confirming much earlier research.  相似文献   

8.
In this article, we consider some nonparametric goodness-of-fit tests for right censored samples, viz., the modified Kolmogorov, Cramer–von Mises–Smirnov, Anderson–Darling, and Nikulin–Rao–Robson χ2 tests. We also consider an approach based on a transformation of the original censored sample to a complete one and the subsequent application of classical goodness-of-fit tests to the pseudo-complete sample. We then compare these tests in terms of power in the case of Type II censored data along with the power of the Neyman–Pearson test, and draw some conclusions. Finally, we present an illustrative example.  相似文献   

9.
We consider a nonparametric autoregression model under conditional heteroscedasticity with the aim to test whether the innovation distribution changes in time. To this end, we develop an asymptotic expansion for the sequential empirical process of nonparametrically estimated innovations (residuals). We suggest a Kolmogorov–Smirnov statistic based on the difference of the estimated innovation distributions built from the first ?ns?and the last n ? ?ns? residuals, respectively (0 ≤ s ≤ 1). Weak convergence of the underlying stochastic process to a Gaussian process is proved under the null hypothesis of no change point. The result implies that the test is asymptotically distribution‐free. Consistency against fixed alternatives is shown. The small sample performance of the proposed test is investigated in a simulation study and the test is applied to a data example.  相似文献   

10.
This work considers goodness-of-fit for the life test data with hybrid censoring. An alternative representation of the Kolmogorov–Smirnov (KS) statistics is provided under Type-I censoring. The alternative representation leads us to approximate the limiting distributions of the KS statistic as a functional of the Brownian bridge for Type-II, Type-I hybrid, and Type-II hybrid censored data. The approximated distributions are used to obtain the critical values of the tests in this context. We found that the proposed KS test procedure for Type-II censoring has more power than the available one(s) in literature.  相似文献   

11.
In this article, we describe a new approach to compare the power of different tests for normality. This approach provides the researcher with a practical tool for evaluating which test at their disposal is the most appropriate for their sampling problem. Using the Johnson systems of distribution, we estimate the power of a test for normality for any mean, variance, skewness, and kurtosis. Using this characterization and an innovative graphical representation, we validate our method by comparing three well-known tests for normality: the Pearson χ2 test, the Kolmogorov–Smirnov test, and the D'Agostino–Pearson K 2 test. We obtain such comparison for a broad range of skewness, kurtosis, and sample sizes. We demonstrate that the D'Agostino–Pearson test gives greater power than the others against most of the alternative distributions and at most sample sizes. We also find that the Pearson χ2 test gives greater power than Kolmogorov–Smirnov against most of the alternative distributions for sample sizes between 18 and 330.  相似文献   

12.
We examine the sizes and powers of three tests of convergence of Markov Chain Monte Carlo draws: the Kolmogorov–Smirnov test, fluctuation test, and Geweke's test. We show that the sizes and powers are sensitive to the existence of autocorrelation in the draws. We propose a filtered test that is corrected for autocorrelation. We present a numerical illustration using the Federal funds rate.  相似文献   

13.
The maximum vertical distance between a receiver operating characteristic (ROC) curve and its chance diagonal is a common measure of effectiveness of the classifier that gives rise to this curve. This measure is known to be equivalent to a two-sample Kolmogorov–Smirnov statistic; so the absolute difference D between two such statistics is often used informally as a measure of difference between the corresponding classifiers. A significance test of D is of great practical interest, but the available Kolmogorov–Smirnov distribution theory precludes easy analytical construction of such a significance test. We, therefore, propose a Monte Carlo procedure for conducting the test, using the binormal model for the underlying ROC curves. We provide Splus/R routines for the computation, tabulate the results for a number of illustrative cases, apply the methods to some practical examples and discuss some implications.  相似文献   

14.
The problem of testing whether two samples of possibly right-censored survival data come from the same distribution is considered. The aim is to develop a test which is capable of detection of a wide spectrum of alternatives. A new class of tests based on Neyman's embedding idea is proposed. The null hypothesis is tested against a model where the hazard ratio of the two survival distributions is expressed by several smooth functions. A data-driven approach to the selection of these functions is studied. Asymptotic properties of the proposed procedures are investigated under fixed and local alternatives. Small-sample performance is explored via simulations which show that the power of the proposed tests appears to be more robust than the power of some versatile tests previously proposed in the literature (such as combinations of weighted logrank tests, or Kolmogorov–Smirnov tests).  相似文献   

15.
In this paper, point and interval estimations for the parameters of the exponentiated exponential (EE) distribution are studied based on progressive first-failure-censored data. The Bayes estimates are computed based on squared error and Linex loss functions and using Markov Chain Monte Carlo (MCMC) algorithm. Also, based on this censoring scheme, approximate confidence intervals for the parameters of EE distribution are developed. Monte Carlo simulation study is carried out to compare the performances of the different methods by computing the estimated risks (ERs), as well as Akaike's information criteria (AIC) and Bayesian information criteria (BIC) of the estimates. Finally, a real data set is introduced and analyzed using EE and Weibull distributions. A comparison is carried out between the mentioned models based on the corresponding Kolmogorov–Smirnov (K–S) test statistic to emphasize that the EE model fits the data with the same efficiency as the other model. Point and interval estimation of all parameters are studied based on this real data set as illustrative example.  相似文献   

16.
This article presents a derivation of the distribution of the Kolmogorov–Smirnov, Cramer–von Mises, and Anderson–Darling test statistics in the case of exponential sampling when the parameters are unknown and estimated from sample data for small sample sizes via maximum likelihood.  相似文献   

17.
Normal residual is one of the usual assumptions in autoregressive model but sometimes in practice we are faced with non-negative residuals. In this paper, we have derived modified maximum likelihood estimators of parameters of the residuals and autoregressive coefficient. Also asymptotic distribution of modified maximum likelihood estimators in both stationary and non-stationary models are computed. So that, we can derive asymptotic distribution of unit root, Vuong's and Cox's tests statistics in stationary situation. Using simulation, it shows that Akaike information criterion and Vuong's test work to select the optimal autoregressive model with non-negative residuals. Sometimes Vuong's test select two competing models as equivalent models. These models may be suitable or unsuitable equivalent models. So we consider Cox's test to make inference after model selection. Kolmogorov–Smirnov test confirms our results. Also we have computed tracking interval for competing models to choosing between two close competing models when Vuong's test and Cox's test cannot detect the differences.  相似文献   

18.
We develop an exact Kolmogorov–Smirnov goodness-of-fit test for the Poisson distribution with an unknown mean. This test is conditional, with the test statistic being the maximum absolute difference between the empirical distribution function and its conditional expectation given the sample total. Exact critical values are obtained using a new algorithm. We explore properties of the test, and we illustrate it with three examples. The new test seems to be the first exact Poisson goodness-of-fit test for which critical values are available without simulation or exhaustive enumeration.  相似文献   

19.
A new procedure of shift parameter estimation in the two-sample location problem is investigated and compared with existing estimators. The proposed procedure smooths the empirical distribution functions of each random sample and replaces empirical distribution functions in the two-sample Kolmogorov–Smirnov method. The smoothed Kolmogorov–Smirnov is minimized with respect to an arbitrary shift variable in order to find an estimate of the shift parameter. The proposed procedure can be considered the smoothed version of a very little known method of shift parameter estimation from Rao-Schuster-Littell (RSL) [Rao et al., Estimation of shift and center of symmetry based on Kolmogorov–Smirnov statistics, Ann. Stat. 3(4) (1975), pp. 862–873]. Their estimator will be discussed and compared with the proposed estimator in this paper. An example and simulation studies have been performed to compare the proposed procedure with existing shift parameter estimators such as Hodges–Lehmann (H–L) and least squares in addition to RSL's estimator. The results show that the proposed estimator has lower mean-squared error as well as higher relative efficiency against RSL's estimator under normal or contaminated normal model assumptions. Moreover, the proposed estimator performs competitively against H–L and least-squares shift estimators. Smoother function and bandwidth selections are also discussed and several alternatives are proposed in the study.  相似文献   

20.
In this article, we consider the class of censored exponential regression models which is very useful for modeling lifetime data. Under a sequence of Pitman alternatives, the asymptotic expansions up to order n? 1/2 of the non null distribution functions of the likelihood ratio, Wald, Rao score, and gradient statistics are derive in this class of models. The non null asymptotic distribution functions of these statistics are obtained for testing a composite null hypothesis in the presence of nuisance parameters. The power of all four tests, which are equivalent to first order, are compared based on these non null asymptotic expansions. Furthermore, in order to compare the finite-sample performance of these tests in this class of models, we consider Monte Carlo simulations. We also present an empirical application for illustrative purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号