首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
《统计学通讯:理论与方法》2012,41(13-14):2367-2385
Orthogonal regression is a proper tool to analyze relations between two variables when three-part compositional data, i.e., three-part observations carrying relative information (like proportions or percentages), are under examination. When linear statistical models with type-II constraints (constraints involving other parameters besides the ones of the unknown model) are employed for estimating the parameters of the regression line, approximate variances and covariances of the estimated line coefficients can be determined. Moreover, the additional assumption of normality enables to construct confidence domains and perform hypotheses testing. The theoretical results are applied to a real-world example.  相似文献   

2.
3.
Michal Pešta 《Statistics》2013,47(5):966-991
The solution to the errors-in-variables problem computed through total least squares is highly nonlinear. Because of this, many statistical procedures for constructing confidence intervals and testing hypotheses cannot be applied. One possible solution to this dilemma is bootstrapping. A nonparametric bootstrap technique could fail. Here, the proper nonparametric bootstrap procedure is provided and its correctness is proved. On the other hand, a residual bootstrap is not valid and suitable in this case. The results are illustrated through a simulation study. An application of this approach to calibration data is presented.  相似文献   

4.
Consider a vector valued response variable related to a vector valued explanatory variable through a normal multivariate linear model. The multivariate calibration problem deals with statistical inference on unknown values of the explanatory variable. The problem addressed is the construction of joint confidence regions for several unknown values of the explanatory variable. The problem is investigated when the variance covariance matrix is a scalar multiple of the identity matrix and also when it is a completely unknown positive definite matrix. The problem is solved in only two cases: (i) the response and explanatory variables have the same dimensions, and (ii) the explanatory variable is a scalar. In the former case, exact joint confidence regions are derived based on a natural pivot statistic. In the latter case, the joint confidence regions are only conservative. Computational aspects and the practical implementation of the confidence regions are discussed and illustrated using an example.  相似文献   

5.
Partially linear models provide a useful class of tools for modeling complex data by naturally incorporating a combination of linear and nonlinear effects within one framework. One key question in partially linear models is the choice of model structure, that is, how to decide which covariates are linear and which are nonlinear. This is a fundamental, yet largely unsolved problem for partially linear models. In practice, one often assumes that the model structure is given or known and then makes estimation and inference based on that structure. Alternatively, there are two methods in common use for tackling the problem: hypotheses testing and visual screening based on the marginal fits. Both methods are quite useful in practice but have their drawbacks. First, it is difficult to construct a powerful procedure for testing multiple hypotheses of linear against nonlinear fits. Second, the screening procedure based on the scatterplots of individual covariate fits may provide an educated guess on the regression function form, but the procedure is ad hoc and lacks theoretical justifications. In this article, we propose a new approach to structure selection for partially linear models, called the LAND (Linear And Nonlinear Discoverer). The procedure is developed in an elegant mathematical framework and possesses desired theoretical and computational properties. Under certain regularity conditions, we show that the LAND estimator is able to identify the underlying true model structure correctly and at the same time estimate the multivariate regression function consistently. The convergence rate of the new estimator is established as well. We further propose an iterative algorithm to implement the procedure and illustrate its performance by simulated and real examples. Supplementary materials for this article are available online.  相似文献   

6.
A problem arising from the study of the spread of a viral infection among potato plants by aphids appears to involve a mixture of two linear regressions on a single predictor variable. The plant scientists studying the problem were particularly interested in obtaining a 95% confidence upper bound for the infection rate. We discuss briefly the procedure for fitting mixtures of regression models by means of maximum likelihood, effected via the EM algorithm. We give general expressions for the implementation of the M-step and then address the issue of conducting statistical inference in this context. A technique due to T. A. Louis may be used to estimate the covariance matrix of the parameter estimates by calculating the observed Fisher information matrix. We develop general expressions for the entries of this information matrix. Having the complete covariance matrix permits the calculation of confidence and prediction bands for the fitted model. We also investigate the testing of hypotheses concerning the number of components in the mixture via parametric and 'semiparametric' bootstrapping. Finally, we develop a method of producing diagnostic plots of the residuals from a mixture of linear regressions.  相似文献   

7.
This paper addresses the problem of confidence band construction for a standard multiple linear regression model. A “ray” method of construction is developed which generalizes the method of Graybill and Bowden [1967. Linear segment confidence bands for simple linear regression models. J. Amer. Statist. Assoc. 62, 403–408] for a simple linear regression model to a multiple linear regression model. By choosing suitable directions for the rays this method requires only critical points from t-distributions so that the confidence bands are easy to construct. Both one-sided and two-sided confidence bands can be constructed using this method. An illustration of the new method is provided.  相似文献   

8.
Assessment of analytical similarity of tier 1 quality attributes is based on a set of hypotheses that tests the mean difference of reference and test products against a margin adjusted for standard deviation of the reference product. Thus, proper assessment of the biosimilarity hypothesis requires statistical tests that account for the uncertainty associated with the estimations of the mean differences and the standard deviation of the reference product. Recently, a linear reformulation of the biosimilarity hypothesis has been proposed, which facilitates development and implementation of statistical tests. These statistical tests account for the uncertainty in the estimation process of all the unknown parameters. In this paper, we survey methods for constructing confidence intervals for testing the linearized reformulation of the biosimilarity hypothesis and also compare the performance of the methods. We discuss test procedures using confidence intervals to make possible comparison among recently developed methods as well as other previously developed methods that have not been applied for demonstrating analytical similarity. A computer simulation study was conducted to compare the performance of the methods based on the ability to maintain the test size and power, as well as computational complexity. We demonstrate the methods using two example applications. At the end, we make recommendations concerning the use of the methods.  相似文献   

9.
We consider simultaneous confidence regions for some hypotheses on ratios of the discriminant coefficients of the linear discriminant function when the population means and common covariance matrix are unknown. This problem, involving hypotheses on ratios, yields the so-called ‘pseudo’ confidence regions valid conditionally in subsets of the parameter space. We obtain the explicit formulae of the regions and give further discussion on the validity of these regions. Illustrations of the pseudo confidence regions are given.  相似文献   

10.
ABSTRACT

Incremental modelling of data streams is of great practical importance, as shown by its applications in advertising and financial data analysis. We propose two incremental covariance matrix decomposition methods for a compositional data type. The first method, exact incremental covariance decomposition of compositional data (C-EICD), gives an exact decomposition result. The second method, covariance-free incremental covariance decomposition of compositional data (C-CICD), is an approximate algorithm that can efficiently compute high-dimensional cases. Based on these two methods, many frequently used compositional statistical models can be incrementally calculated. We take multiple linear regression and principle component analysis as examples to illustrate the utility of the proposed methods via extensive simulation studies.  相似文献   

11.
In this paper, we present a statistical inference procedure for the step-stress accelerated life testing (SSALT) model with Weibull failure time distribution and interval censoring via the formulation of generalized linear model (GLM). The likelihood function of an interval censored SSALT is in general too complicated to obtain analytical results. However, by transforming the failure time to an exponential distribution and using a binomial random variable for failure counts occurred in inspection intervals, a GLM formulation with a complementary log-log link function can be constructed. The estimations of the regression coefficients used for the Weibull scale parameter are obtained through the iterative weighted least square (IWLS) method, and the shape parameter is updated by a direct maximum likelihood (ML) estimation. The confidence intervals for these parameters are estimated through bootstrapping. The application of the proposed GLM approach is demonstrated by an industrial example.  相似文献   

12.
This article considers the problem of statistical inference in linear regression models with dependent errors. A sieve-type generalized least squares (GLS) procedure is proposed based on an autoregressive approximation to the generating mechanism of the errors. The asymptotic properties of the sieve-type GLS estimator are established under general conditions, including mixingale-type conditions as well as conditions which allow for long-range dependence in the stochastic regressors and/or the errors. A Monte Carlo study examines the finite-sample properties of the method for testing regression hypotheses.  相似文献   

13.
ABSTRACT

Calibration, also called inverse regression, is a classical problem which appears often in a regression setup under fixed design. The aim of this article is to propose a stochastic method which gives an estimated solution for a linear calibration problem. We establish exponential inequalities of Bernstein–Frechet type for the probability of the distance between the approximate solutions and the exact one. Furthermore, we build a confidence domain for the so-mentioned exact solution. To check the validity of our results, a numerical example is proposed.  相似文献   

14.
Hypothesis Testing in Two-Stage Cluster Sampling   总被引:1,自引:0,他引:1  
Correlated observations often arise in complex sampling schemes such as two-stage cluster sampling. The resulting observations from this sampling scheme usually exhibit certain positive intracluster correlation, as a result of which the standard statistical procedures for testing hypotheses concerning linear combinations of the parameters may lack some of the optimal properties that these possess when the data are uncorrelated. The aim of this paper is to present exact methods for testing these hypotheses by combining within and between cluster information much as in Zhou & Mathew (1993).  相似文献   

15.
In this paper we consider the problem of testing hypotheses in parametric models, when only the first r (of n) ordered observations are known.Using divergence measures, a procedure to test statistical hypotheses is proposed, Replacing the parameters by suitable estimators in the expresion of the divergence measure, the test statistics are obtained.Asymptotic distributions for these statistics are given in several cases when maximum likelihood estimators for truncated samples are considered.Applications of these results in testing statistical hypotheses, on the basis of truncated data, are presented.The small sample behavior of the proposed test statistics is analyzed in particular cases.A comparative study of power values is carried out by computer simulation.  相似文献   

16.
A computer simulation is performed to compare confidence regions arising from Fie1ler's theorem and approximate large sample intervals in estimating the point of extremum in quadratic regression. In addition, two designs, one of which is motivated by optimal design theory, are compared. These comparisons are made by examining the confidence level and accuracy of the regions, as well as the concentration of the standard point estimator, in a variety of settings. The results have implications for the more general problem of estimating a ratio of linear combinations in the general linear model.  相似文献   

17.
Simultaneous confidence bands have been shown in the statistical literature as powerful inferential tools in univariate linear regression. While the methodology of simultaneous confidence bands for univariate linear regression has been extensively researched and well developed, no published work seems available for multivariate linear regression. This paper fills this gap by studying one particular simultaneous confidence band for multivariate linear regression. Because of the shape of the band, the word ‘tube’ is more pertinent and so will be used to replace the word ‘band’. It is shown that the construction of the tube is related to the distribution of the largest eigenvalue. A simulation‐based method is proposed to compute the 1 ? α quantile of this eigenvalue. With the computation power of modern computers, the simultaneous confidence tube can be computed fast and accurately. A real‐data example is used to illustrate the method, and many potential research problems have been pointed out.  相似文献   

18.
Many of the existing methods of finding calibration intervals in simple linear regression rely on the inversion of prediction limits. In this article, we propose an alternative procedure which involves two stages. In the first stage, we find a confidence interval for the value of the explanatory variable which corresponds to the given future value of the response. In the second stage, we enlarge the confidence interval found in the first stage to form a confidence interval called, calibration interval, for the value of the explanatory variable which corresponds to the theoretical mean value of the future observation. In finding the confidence interval in the first stage, we have used the method based on hypothesis testing and percentile bootstrap. When the errors are normally distributed, the coverage probability of resulting calibration interval based on hypothesis testing is comparable to that of the classical calibration interval. In the case of non normal errors, the coverage probability of the calibration interval based on hypothesis testing is much closer to the target value than that of the calibration interval based on percentile bootstrap.  相似文献   

19.
Trimmed samples are commonly used in several branches of statistical methodology, especially when the presence of contaminated data is suspected. Assuming that certain proportions of the smallest and largest observations from a Weibull sample are unknown or have been eliminated, a Bayesian approach to point and interval estimation of the scale parameter, as well as hypothesis testing and prediction, is presented. In many cases, the use of substantial prior information can significantly increase the quality of the inferences and reduce the amount of testing required. Some Bayes estimators and predictors are derived in closed-forms. Highest posterior density estimators and credibility intervals can be computed using iterative methods. Bayes rules for testing one- and two-sided hypotheses are also provided. An illustrative numerical example is included.  相似文献   

20.
Abstract.  We propose a confidence envelope for false discovery control when testing multiple hypotheses of association simultaneously. The method is valid under arbitrary and unknown dependence between the test statistics and allows for an exploratory approach when choosing suitable rejection regions while still retaining strong control over the proportion of false discoveries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号