首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The monitoring of process/product profiles is presently a growing and promising area of research in statistical process control. This study is aimed at developing monitoring schemes for nonlinear profiles with random effects. We utilize the technique of principal components analysis to analyze the covariance structure of the profiles and propose monitoring schemes based on principal component (PC) scores. The number of the PC scores used in constructing control charts is crucial to the detecting power. In the Phase I analysis of historical data, due to the dependency of the PC-scores, we adopt the usual Hotelling T 2 chart to check the stability. For Phase II monitoring, we study individual PC-score control charts, a combined chart scheme that combines all the PC-score charts, and a T 2 chart. Although an individual PC-score chart may be perfect for monitoring a particular mode of variation, a chart that can detect general shifts, such as the T 2 chart and the combined chart scheme, is more feasible in practice. The performances of the schemes under study are evaluated in terms of the average run length.  相似文献   

2.
ABSTRACT

We present an alternative sampling scheme for the Hotelling's T2 control chart with variable parameters (VP T2) which allows the sampling interval h, the sample size n, and control limit k to vary between minimum and maximum values while keeping the warning line fixed over time. Our method uses only one measurement scale to overcome the difficulties of using two scales in practice. Later, we demonstrate the merits of the method in terms of its performance in detecting small-to-moderate shifts and its ease of application.  相似文献   

3.
One of the objectives of research in statistical process control is to obtain control charts that show few false alarms but, at the same time, are able to detect quickly the shifts in the distribution of the quality variables employed to monitor a productive process. In this article, the synthetic-T 2 control chart is developed, which consists of the simultaneous use of a CRL chart and a Hotelling's T 2 control chart. The ARL is calculated employing Markov chains for steady and zero-state scenarios. A procedure of optimization has been developed to obtain the optimum parameters of the synthetic-T 2, for zero and steady cases, given the values of in-control ARL and magnitude of shift which needs to be detected rapidly. A comparison between (standard T 2, MEWMA, T 2 with variable sample size, and T 2 with double sampling) charts reveals that the synthetic-T 2 chart always performs better than the standard T 2 chart. The comparison with the remaining charts demonstrate in which cases the performance of this new chart makes it interesting to employ in real applications.  相似文献   

4.
Abstract

In this paper, a synthetic control chart is proposed by integrating the salient features of the npx chart and the CRL chart. The synthetic chart achieves higher detection effectiveness on both small and large mean shifts while retaining the operational simplicity of the attribute charts owing to only using attribute inspection. Both statistical and economic design of the synthetic chart are considered and numerical tests have indicated that the synthetic chart has a higher power for detecting mean shifts than the npx chart, MON chart and CUSUM chart. In addition, sensitivity analyses are also performed under both the statistical and economic design model.  相似文献   

5.
The Hotelling's T 2 control chart, a direct analogue of the univariate Shewhart chart, is perhaps the most commonly used tool in industry for simultaneous monitoring of several quality characteristics. Recent studies have shown that using variable sampling size (VSS) schemes results in charts with more statistical power when detecting small to moderate shifts in the process mean vector. In this paper, we build a cost model of a VSS T 2 control chart for the economic and economic statistical design using the general model of Lorenzen and Vance [The economic design of control charts: A unified approach, Technometrics 28 (1986), pp. 3–11]. We optimize this model using a genetic algorithm approach. We also study the effects of the costs and operating parameters on the VSS T 2 parameters, and show, through an example, the advantage of economic design over statistical design for VSS T 2 charts, and measure the economic advantage of VSS sampling versus fixed sample size sampling.  相似文献   

6.
Hotelling’s T2 control chart with double warning lines   总被引:1,自引:1,他引:0  
Recent studies have shown that the T 2 control chart with variable sampling intervals (VSI) and/or variable sample sizes (VSS) detects process shifts faster than the traditional T 2 chart. This article extends these studies for processes that are monitored with VSI and VSS using double warning lines (T 2 —DWL). It is assumed that the length of time the process remains in control has exponential distribution. The properties of T 2 —DWL chart are obtained using Markov chains. The results show that the T 2 —DWL chart is quicker than VSI and/or VSS charts in detecting almost all shifts in the process mean.  相似文献   

7.
The most common charting procedure used for monitoring the variance of the distribution of a quality characteristic is the S control chart. As a Shewhart-type control chart, it is relatively insensitive in the quick detection of small and moderate shifts in process variance. The performance of the S chart can be improved by supplementing it with runs rules or by varying the sample size and the sampling interval. In this work, we introduce and study one-sided adaptive S control charts, supplemented or not with one powerful runs rule, for detecting increases or decreases in process variation. The properties of the proposed control schemes are obtained by using a Markov chain approach. Furthermore, a practical guidance for the choice of the most suitable control scheme is also provided.  相似文献   

8.
In certain statistical process control applications, performance of a product or process can be monitored effectively using a linear profile or a linear relationship between a response variable and one or more explanatory variables. In this article, we design a nonparametric bootstrap control chart for monitoring simple linear profiles based on T 2 statistic. We evaluate the performance of the proposed method in phase II. The average and standard deviation of the run length under different shifts in the intercept, slope, and standard deviation are considered as the performance measures. Simulation results show that the performance of the proposed bootstrap control chart improves as the size of the available data increases.  相似文献   

9.
The combined EWMA-X chart is a commonly used tool for monitoring both large and small process shifts. However, this chart requires calculating and monitoring two statistics along with two sets of control limits. Thus, this study develops a single-featured EWMA-X (called SFEWMA-X) control chart which has the ability to simultaneously monitor both large and small process shifts using only one set of statistic and control limits. The proposed SFEWMA-X chart is further extended to monitoring the shifts in process standard deviation. A set of simulated data are used to demonstrate the proposed chart's superior performance in terms of average run length compared with that of the traditional charts. The experimental examples also show that the SFEWMA-X chart is neater and easier to visually interpret than the original EWMA-X chart.  相似文献   

10.
For the univariate case, the R chart and the S 2 chart are the most common charts used for monitoring the process dispersion. With the usual sample size of 4 and 5, the R chart is slightly inferior to the S 2 chart in terms of efficiency in detecting process shifts. In this article, we show that for the multivariate case, the chart based on the standardized sample ranges, we call the RMAX chart, is substantially inferior in terms of efficiency in detecting shifts in the covariance matrix than the VMAX chart, which is based on the standardized sample variances. The user's familiarity with sample ranges is a point in favor of the RMAX chart. An example is presented to illustrate the application of the proposed chart.  相似文献   

11.
12.
Statistical process control tools have been used routinely to improve process capabilities through reliable on-line monitoring and diagnostic processes. In the present paper, we propose a novel multivariate control chart that integrates a support vector machine (SVM) algorithm, a bootstrap method, and a control chart technique to improve multivariate process monitoring. The proposed chart uses as the monitoring statistic the predicted probability of class (PoC) values from an SVM algorithm. The control limits of SVM-PoC charts are obtained by a bootstrap approach. A simulation study was conducted to evaluate the performance of the proposed SVM–PoC chart and to compare it with other data mining-based control charts and Hotelling's T 2 control charts under various scenarios. The results showed that the proposed SVM–PoC charts outperformed other multivariate control charts in nonnormal situations. Further, we developed an exponential weighed moving average version of the SVM–PoC charts for increasing sensitivity to small shifts.  相似文献   

13.
A new S2 control chart is presented for monitoring the process variance by utilizing a repetitive sampling scheme. The double control limits called inner and outer control limits are proposed, whose coefficients are determined by considering the average run length (ARL) and the average sample number when the process is in control. The proposed control chart is compared with the existing Shewhart S2 control chart in terms of the ARLs. The result shows that the proposed control chart is more efficient than the existing control chart in detecting the process shift.  相似文献   

14.
15.
ABSTRACT

It is an increasingly common practice to monitor several related quality characteristics of a product or process using a multivariate control chart procedure. Several types of multivariate control charts, including Hotelling's χ 2 and T 2 control charts, have been developed in attempts to improve monitoring by using the correlation structure that exists between quality characteristics. The purpose of this paper is to summarize the assumptions made regarding the out-of-control process shift in the economic design of multivariate control charts and to address their consequences. We study the average run length (ARL) properties of the χ 2 control chart using a numerical example and show that this chart can perform ineffectively under the assumed out-of-control conditions when designed using the economic approach. Following Healy,[1] Healy, J.D. 1987. A Note on the Multivariate CUSUM Procedures. Technometrics, 29: 409412. [Taylor & Francis Online], [Web of Science ®] [Google Scholar] we offer an alternative procedure that has improved ARL properties and overall performance. These results can be important to researchers and practitioners who are interested in using the economic design of multivariate control procedures.  相似文献   

16.
A variable sample size (VSS) scheme directly monitoring the coefficient of variation (CV), instead of monitoring the transformed statistics, is proposed. Optimal chart parameters are computed based on two criteria: (i) minimizing the out-of-control ARL (ARL1) and (ii) minimizing the out-of-control ASS (ASS1). Then the performances are compared between these two criteria. The advantages of the proposed chart over the VSS chart based on the transformed statistics in the existing literature are: the former (i) provides an easier alternative as no transformation is involved and (ii) requires less number of observations to detect a shift when ASS1 is minimized.  相似文献   

17.
In statistical process control applications, the multivariate T 2 control chart based on Hotelling's T 2 statistic is useful for detecting the presence of special causes of variation. In particular, use of the T 2 statistic based on the successive differences covariance matrix estimator has been shown to be very effective in detecting the presence of a sustained step or ramp shift in the mean vector. However, the exact distribution of this statistic is unknown. In this article, we derive the maximum value of the T 2 statistic based on the successive differences covariance matrix estimator. This distributional property is crucial for calculating an approximate upper control limit of a T 2 control chart based on successive differences, as described in Williams et al. (2006 Williams , J. D. , Woodall , W. H. , Birch , J. B. , Sullivan , J. H. ( 2006 ). On the distribution of T 2 statistics based on successive differences . J. Qual. Technol. 38 : 217229 .[Taylor & Francis Online], [Web of Science ®] [Google Scholar]).  相似文献   

18.
Statistical design is applied to a multivariate exponentially weighted moving average (MEWMA) control chart. The chart parameters are control limit H and smoothing constant r. The choices of the parameters depend on the number of variables p and the size of the process mean shift δ. The MEWMA statistic is modeled as a Markov chain and the Markov chain approach is used to determine the properties of the chart. Although average run length has become a traditional measure of the performance of control schemes, some authors have suggested other measures, such as median and other percentiles of the run length distribution to explain run length properties of a control scheme. This will allow a thorough study of the performance of the control scheme. Consequently, conclusions based on these measures would provide a better and comprehensive understanding of a scheme. In this article, we present the performance of the MEWMA control chart as measured by the average run length and median run length. Graphs are given so that the chart parameters of an optimal MEWMA chart can be determined easily.  相似文献   

19.
We propose a new nonparametric multivariate control chart that integrates a novelty score. The proposed control chart uses as its monitoring statistic a hybrid novelty score, calculated based on the distance to local observations as well as on the distance to the convex hull constructed by its neighbors. The control limits of the proposed control chart were established based on a bootstrap method. A rigorous simulation study was conducted to examine the properties of the proposed control chart under various scenarios and compare it with existing multivariate control charts in terms of average run length (ARL) performance. The simulation results showed that the proposed control chart outperformed both the parametric and nonparametric Hotelling's T 2 control charts, especially in nonnormal situations. Moreover, experimental results with real semiconductor data demonstrated the applicability and effectiveness of the proposed control chart. To increase the capability to detect small mean shift, we propose an exponentially weighted hybrid novelty score control chart. Simulation results indicated that exponentially weighted hybrid score charts outperformed the hybrid novelty score based control charts.  相似文献   

20.
A multivariate extension of the adaptive exponentially weighted moving average (AEWMA) control chart is proposed. The new multivariate scheme can detect small and large shifts in the process mean vector effectively. The proposed scheme can be viewed as a smooth combination of a multivariate exponentially weighted moving average (MEWMA) chart and a Shewhart χ2-chart. The optimal design of the proposed chart is given according to a pre-specified in-control average run length and two shift sizes; a small and large shift each measured in terms of the non centrality parameter. The signal resistance of the newly proposed multivariate chart is also given. Comparisons among the new chart, the MEWMA chart, and the combined Shewhart-MEWMA (S-MEWMA) chart in terms of the standard and worst-case average run length profiles are presented. In addition, the three charts are compared with respect to their worst-case signal resistance values. The proposed chart gives somewhat better worst-case ARL and signal resistance values than the competing charts. It also gives better standard ARL performance especially for moderate and large shifts. The effectiveness of our proposed chart is illustrated through an example with simulated data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号