首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much service data come from a process with variables having non-normal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, should not be properly used in such circumstances. In this paper, we propose a new variance chart based on a simple statistic to monitor process variance shifts. We explore the sampling properties of the new monitoring statistic and calculate the average run lengths (ARLs) of the proposed variance chart. Furthermore, an arcsine transformed exponentially weighted moving average (EWMA) chart is proposed because the ARLs of this modified chart are more intuitive and reasonable than those of the variance chart. We compare the out-of-control variance detection performance of the proposed variance chart with that of the non-parametric Mood variance (NP-M) chart with runs rules, developed by Zombade and Ghute [Nonparametric control chart for variability using runs rules. Experiment. 2014;24(4):1683–1691], and the nonparametric likelihood ratio-based distribution-free exponential weighted moving average (NLE) chart and the combination of traditional exponential weighted moving average (EWMA) mean and EWMA variance (CEW) control chart proposed by Zou and Tsung [Likelihood ratio-based distribution-free EWMA control charts. J Qual Technol. 2010;42(2):174–196] by considering cases in which the critical quality characteristic has a normal, a double exponential or a uniform distribution. Comparison results showed that the proposed chart performs better than the NP-M with runs rules, and the NLE and CEW control charts. A numerical example of service times with a right-skewed distribution from a service system of a bank branch in Taiwan is used to illustrate the application of the proposed variance chart and of the arcsine transformed EWMA chart and to compare them with three existing variance (or standard deviation) charts. The proposed charts show better detection performance than those three existing variance charts in monitoring and detecting shifts in the process variance.  相似文献   

2.
The most common charting procedure used for monitoring the variance of the distribution of a quality characteristic is the S control chart. As a Shewhart-type control chart, it is relatively insensitive in the quick detection of small and moderate shifts in process variance. The performance of the S chart can be improved by supplementing it with runs rules or by varying the sample size and the sampling interval. In this work, we introduce and study one-sided adaptive S control charts, supplemented or not with one powerful runs rule, for detecting increases or decreases in process variation. The properties of the proposed control schemes are obtained by using a Markov chain approach. Furthermore, a practical guidance for the choice of the most suitable control scheme is also provided.  相似文献   

3.
The performance of several control charting schemes is studied when the process mean changes as a linear trend. The control charts considered include the Shewhart chart, the Shewhart chart supplemented with runs rules, the cumulative sum (CUSUM) chart, the exponentially weighted moving average (EWMA) chart, and a generalized control chart.  相似文献   

4.
This paper is concerned with the problem of simultaneously monitoring the process mean and process variability of continuous production processes using combined Shewhart-cumulative score (cuscore) quality control procedures developed by Ncube and Woodall (1984). Two methods of approach are developed and their properties are investigated. One method uses two separate Shewhart-cuscore control charts, one for determining shifts in the process mean and the other for detecting shifts in process variability. The other method uses a single combined statistic which is sensitive to shifts in both the mean and the variance. Each procedure is compared to the corresponding Shewhart schemes. It will be shown by average run length calculations that the proposed Shewhart- cuscore schemes are considerably more efficient than the comparative Shewhart procedures for certain shifts in the process mean and process variability for the case when the underlying process control variable is assumed to be normally distributed.  相似文献   

5.
The paper proposes the variables sampling interval (VSI) scheme to monitor the means and the variances in two dependent process steps. The performance of the considered VSI control charts is measured by the adjusted average time to signal derived by a Markov chain approach. An example of the process control for the metallic film thickness of the computer connectors system shows the application and performance of the proposed VSI control charts in detecting shifts. Furthermore, the performance of the VSI control charts and the fixed sampling interval control charts are compared via the numerical analysis results. These demonstrate that the former is much faster in detecting shifts. Whenever quality engineers cannot specify the values of variable sampling intervals, the optimal VSI control charts are recommended. Furthermore, the impacts of misusing Shewhart charts to monitoring the process mean and variance in the second process step are also investigated.  相似文献   

6.
This paper studies the effects of non-normality and autocorrelation on the performances of various individuals control charts for monitoring the process mean and/or variance. The traditional Shewhart X chart and moving range (MR) chart are investigated as well as several types of exponentially weighted moving average (EWMA) charts and combinations of control charts involving these EWMA charts. It is shown that the combination of the X and MR charts will not detect small and moderate parameter shifts as fast as combinations involving the EWMA charts, and that the performana of the X and MR charts is very sensitive to the normality assumption. It is also shown that certain combinations of EWMA charts can be designed to be robust to non-normality and very effective at detecting small and moderate shifts in the process mean and/or variance. Although autocorrelation can have a significant effect on the in-control performances of these combinations of EWMA charts, their relative out-of-control performances under independence are generally maintained for low to moderate levels of autocorrelation.  相似文献   

7.
Average run lengths of the zone control chart are presented, The performance of this chart is compared with that of several Shewhart charts with and without runs rules, It is shown that the standard zone control chart has performance similar to some even simpler charts and a much higher false alarm rate than the Shewhart chart with all of the common runs rules. It is also shown that a slightly modified zone control chart outperforms the Shewhart chart with the common runs rules.  相似文献   

8.
Nonparametric control chart are presented for the problem of detecting changes in the process median (or mean), or changes in the process variability when samples are taken at regular time intervals. The proposed procedures are based on sign-test statistics computed for each sample, and are used in Shewhart and cumulative sum control charts. When the process is in control the run length distributions for the proposed nonparametric control charts do not depend on the distribution of the observations. An additional advantage of the non-parametric control charts is that the variance of the process does not need to be established in order to set up a control chart for the mean. Comparisons with the corresponding parametric control charts are presented. It is also shown that curtailed sampling plans can considerably reduce the expected number of observations used in the Shewhart control schemes based on the sign statistic.  相似文献   

9.
Recent research has shown that the control charts with adaptive features are quicker than the traditional static Shewhart charts in detecting process shifts. This article presents the design and implementation of a control chart based on Adjusted Loss Function (AL) with Variable Sample Sizes and Sampling Intervals (VSSI). This single chart (called the VSSI AL chart) is able to monitor the process shifts in mean and variance simultaneously. Our studies show that the VSSI AL chart is not only easier to design and implement than the VSSI X¯ & S (or X¯ & R) charts, but is also 10% more effective than the latter in detecting the process shifts from an overall viewpoint.  相似文献   

10.
In a process, the deviation from location or scale parameters affects the quality of the process and waste resources. So it is essential to monitor such processes for possible changes due to any assignable causes. Control charts are the most famous tool used to meet this intention. It is useless to monitor process location until the assurance that process dispersion is in-control. This study proposes some new two-sided memory control charts named as progressive variance (PV) control charts which are based on sample variance to monitor changes in process dispersion assuming normality of quality characteristic to be monitored. Simulation studies are made, and an example is discussed to evaluate the performance of the proposed charts. The comparison of the proposed chart is made with exponentially weighted moving average- and cumulative sum-type charts for process dispersion. The study shows that performance of the proposed charts are uniformly better than its competitors for detecting positive shifts while for detecting negative shift in the variance their performance is better for small shifts and reasonably good for moderated shifts.  相似文献   

11.
This article presents a synthetic control chart for detection of shifts in the process median. The synthetic chart is a combination of sign chart and conforming run-length chart. The performance evaluation of the proposed chart indicates that the synthetic chart has a higher power of detecting shifts in process median than the Shewhart charts based on sign statistic as well as the classical Shewhart X-bar chart for various symmetric distributions. The improvement is significant for shifts of moderate to large shifts in the median. The robustness studies of the proposed synthetic control chart against outliers indicate that the proposed synthetic control chart is robust against contamination by outliers.  相似文献   

12.
In profile monitoring, some methods have been developed to detect the unspecified changes in the profiles. However, detecting changes away from the “normal” profile toward one of several prespecified “bad” profiles is one possible and challenging purpose. In this article, control charts with supplementary runs rules are developed to detect the prespecified changes in linear profiles. A control chart is first developed based on the Student's t-statistic in t test, and two runs rules are then supplemented to this chart, respectively. Simulation studies show that the proposed control schemes are effective and stable. Moreover, the control schemes are better than the existing alternative charts when the number of observations per sample profile is large. Finally, two illustrative examples indicate that our proposed schemes are effective and easy to be implemented.  相似文献   

13.
ABSTRACT

Profile monitoring is one of the new research areas in statistical process control. Most of the control charts in this area are designed with fixed sampling rate which makes the control chart slow in detecting small to moderate shifts. In order to improve the performance of the conventional fixed control charts, adaptive features are proposed in which, one or more design parameters vary during the process. In this paper the variable sample size feature of EWMA3 and MEWMA schemes are proposed for monitoring simple linear profiles. The EWMA3 method is based on the combination of three exponentially weighted moving average (EWMA) charts for monitoring three parameters of a simple linear profile separately and the Multivariate EWMA (MEWMA) chart is based on the using a single chart to monitor the coefficients and variance of a general linear profile. Also a two-sided control chart is proposed for monitoring the standard deviation in the EWMA3 method. The performance of the proposed charts is compared in terms of the average time to signal. Numerical examples show that using adaptive features increase the power of control charts in detecting the parameter shifts. Finally, the performance of the proposed variable sample size schemes is illustrated through a real case in the leather industry.  相似文献   

14.
In this article, Six Sigma zone control charts (SSZCCs) are proposed for world class organizations. The transition probabilities are obtained using the Markov chain approach. The Average Run Length (ARL) values are then presented. The ARL performance of the proposed SSZCCs and the standard Six Sigma control chart (SSCC) without zones or run rules is studied. The ARL performance of these charts is then compared with those of the other standard zone control charts (ZCCs), the modified ZCC and the traditional Shewhart control chart (SCC) with common run rules. As expected, it is shown that the proposed SSZCC outperforms the standard SSCC without zones or run rules for process shifts of any magnitude. When compared to the other standard ZCCs and the Shewhart chart with common run rules, it is observed that the proposed SSZCCs have much higher false alarm rates for smaller shifts and hence they prevent unwanted process disturbances. The application of the proposed SSZCC is illustrated using a real time example.  相似文献   

15.
Control charts are the most important statistical process control tool for monitoring variations in a process. A number of articles are available in the literature for the X? control chart based on simple random sampling, ranked set sampling, median-ranked set sampling (MRSS), extreme-ranked set sampling, double-ranked set sampling, double median-ranked set sampling and median double-ranked set sampling. In this study, we highlight some limitations of the existing ranked set charting structures. Besides, we propose different runs rules-based control charting structures under a variety of sampling strategies. We evaluate the performance of the control charting structures using power curves as a performance criterion. We observe that the proposed merger of varying runs rules schemes with different sampling strategies improve significantly the detection ability of location control charting structures. More specifically, the MRSS performs the best under both single- and double-ranked set strategies with varying runs rules schemes. We also include a real-life example to explain the proposal and highlight its significance for practical data sets.  相似文献   

16.
A general model for the zone control chart is presented. Using this model, it is shown that there are score vectors for zone control charts which result in superior average run length performance in comparison to Shewhart charts with common runs rules.

A fast initial response (FIR) feature for the zone control chart is also proposed. Average run lengths of the zone control chart with this feature are calculated. It is shown that the FIR feature improves zone control chart performance by providing significantly earlier signals when the process is out of control.  相似文献   

17.
The Shewhart, Bonferroni-adjustment, and analysis of means (ANOM) control charts are typically applied to monitor the mean of a quality characteristic. The Shewhart and Bonferroni procedure are utilized to recognize special causes in production process, where the control limits are constructed by assuming normal distribution for known parameters (mean and standard deviation), and approximately normal distribution regarding to unknown parameters. The ANOM method is an alternative to the analysis of variance method. It can be used to establish the mean control charts by applying equicorrelated multivariate non central t distribution. In this article, we establish new control charts, in phases I and II monitoring, based on normal and t distributions having as a cause a known (or unknown) parameter (standard deviation). Our proposed methods are at least as effective as the classical Shewhart methods and have some advantages.  相似文献   

18.
ABSTRACT

Runs rules are usually used with Shewhart-type charts to enhance the charts' sensitivities toward small and moderate shifts. Abbas et al. in 2011 took it a step further by proposing two runs rules schemes, applied to the exponentially weighted moving average (EWMA) chart and evaluated their average run length (ARL) performances using simulation. They showed that the proposed schemes are superior to the classical EWMA chart and other schemes being investigated. Besides pointing out some erroneous ARL and standard deviation of the run length (SDRL) computations in Abbas et al., this paper presents a Markov chain approach for computing the ARL, percentiles of the run length (RL) distribution and SDRL, for the two runs rules schemes of Abbas et al. Using Markov chain, we also propose two combined runs rules EWMA schemes to quicken the two schemes of Abbas et al. in responding to large shifts. The runs rules (basic and combined rules) EWMA schemes will be compared with some existing control charting methods, where the former charts are shown to prevail.  相似文献   

19.
The study proposes a Shewhart-type control chart, namely an MD chart, based on average absolute deviations taken from the median, for monitoring changes (especially moderate and large changes – a major concern of Shewhart control charts) in process dispersion assuming normality of the quality characteristic to be monitored. The design structure of the proposed MD chart is developed and its comparison is made with those of two well-known dispersion control charts, namely the R and S charts. Using power curves as a performance measure, it has been observed that the design structure of the proposed MD chart is more powerful than that of the R chart and is very close competitor to that of the S chart, in terms of discriminatory power for detecting shifts in the process dispersion. The non-normality effect is also examined on design structures of the three charts, and it has been observed that the design structure of the proposed MD chart is least affected by departure from normality.  相似文献   

20.
The standard S chart signals an out-of-control condition when one point exceeds a control limit. It can be augmented with runs rules to improve its performance in detecting assignable causes. A commonly used rule signals when k consecutive points exceed a control limit. This rule can be used alone or to supplement the standard chart. In this article we derive ARL expressions for charts with the k-of-k runs rule. We show how to design S charts with this runs rule, compare their ARL performance, and make a control chart recommendation when it is important to monitor for both increases and decreases in process dispersion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号