首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many commonly used statistical methods for data analysis or clinical trial design rely on incorrect assumptions or assume an over‐simplified framework that ignores important information. Such statistical practices may lead to incorrect conclusions about treatment effects or clinical trial designs that are impractical or that do not accurately reflect the investigator's goals. Bayesian nonparametric (BNP) models and methods are a very flexible new class of statistical tools that can overcome such limitations. This is because BNP models can accurately approximate any distribution or function and can accommodate a broad range of statistical problems, including density estimation, regression, survival analysis, graphical modeling, neural networks, classification, clustering, population models, forecasting and prediction, spatiotemporal models, and causal inference. This paper describes 3 illustrative applications of BNP methods, including a randomized clinical trial to compare treatments for intraoperative air leaks after pulmonary resection, estimating survival time with different multi‐stage chemotherapy regimes for acute leukemia, and evaluating joint effects of targeted treatment and an intermediate biological outcome on progression‐free survival time in prostate cancer.  相似文献   

2.
Time‐varying coefficient models are widely used in longitudinal data analysis. These models allow the effects of predictors on response to vary over time. In this article, we consider a mixed‐effects time‐varying coefficient model to account for the within subject correlation for longitudinal data. We show that when kernel smoothing is used to estimate the smooth functions in time‐varying coefficient models for sparse or dense longitudinal data, the asymptotic results of these two situations are essentially different. Therefore, a subjective choice between the sparse and dense cases might lead to erroneous conclusions for statistical inference. In order to solve this problem, we establish a unified self‐normalized central limit theorem, based on which a unified inference is proposed without deciding whether the data are sparse or dense. The effectiveness of the proposed unified inference is demonstrated through a simulation study and an analysis of Baltimore MACS data.  相似文献   

3.
We propose a new type of multivariate statistical model that permits non‐Gaussian distributions as well as the inclusion of conditional independence assumptions specified by a directed acyclic graph. These models feature a specific factorisation of the likelihood that is based on pair‐copula constructions and hence involves only univariate distributions and bivariate copulas, of which some may be conditional. We demonstrate maximum‐likelihood estimation of the parameters of such models and compare them to various competing models from the literature. A simulation study investigates the effects of model misspecification and highlights the need for non‐Gaussian conditional independence models. The proposed methods are finally applied to modeling financial return data. The Canadian Journal of Statistics 40: 86–109; 2012 © 2012 Statistical Society of Canada  相似文献   

4.
Abstract

Although no universally accepted definition of causality exists, in practice one is often faced with the question of statistically assessing causal relationships in different settings. We present a uniform general approach to causality problems derived from the axiomatic foundations of the Bayesian statistical framework. In this approach, causality statements are viewed as hypotheses, or models, about the world and the fundamental object to be computed is the posterior distribution of the causal hypotheses, given the data and the background knowledge. Computation of the posterior, illustrated here in simple examples, may involve complex probabilistic modeling but this is no different than in any other Bayesian modeling situation. The main advantage of the approach is its connection to the axiomatic foundations of the Bayesian framework, and the general uniformity with which it can be applied to a variety of causality settings, ranging from specific to general cases, or from causes of effects to effects of causes.  相似文献   

5.
In survey sampling and in stereology, it is often desirable to estimate the ratio of means θ= E(Y)/E(X) from bivariate count data (X, Y) with unknown joint distribution. We review methods that are available for this problem, with particular reference to stereological applications. We also develop new methods based on explicit statistical models for the data, and associated model diagnostics. The methods are tested on a stereological dataset. For point‐count data, binomial regression and bivariate binomial models are generally adequate. Intercept‐count data are often overdispersed relative to Poisson regression models, but adequately fitted by negative binomial regression.  相似文献   

6.
The causal assumptions, the study design and the data are the elements required for scientific inference in empirical research. The research is adequately communicated only if all of these elements and their relations are described precisely. Causal models with design describe the study design and the missing‐data mechanism together with the causal structure and allow the direct application of causal calculus in the estimation of the causal effects. The flow of the study is visualized by ordering the nodes of the causal diagram in two dimensions by their causal order and the time of the observation. Conclusions on whether a causal or observational relationship can be estimated from the collected incomplete data can be made directly from the graph. Causal models with design offer a systematic and unifying view to scientific inference and increase the clarity and speed of communication. Examples on the causal models for a case–control study, a nested case–control study, a clinical trial and a two‐stage case–cohort study are presented.  相似文献   

7.
Data analysis for randomized trials including multi-treatment arms is often complicated by subjects who do not comply with their treatment assignment. We discuss here methods of estimating treatment efficacy for randomized trials involving multi-treatment arms subject to non-compliance. One treatment effect of interest in the presence of non-compliance is the complier average causal effect (CACE) (Angrist et al. 1996), which is defined as the treatment effect for subjects who would comply regardless of the assigned treatment. Following the idea of principal stratification (Frangakis & Rubin 2002), we define principal compliance (Little et al. 2009) in trials with three treatment arms, extend CACE and define causal estimands of interest in this setting. In addition, we discuss structural assumptions needed for estimation of causal effects and the identifiability problem inherent in this setting from both a Bayesian and a classical statistical perspective. We propose a likelihood-based framework that models potential outcomes in this setting and a Bayes procedure for statistical inference. We compare our method with a method of moments approach proposed by Cheng & Small (2006) using a hypothetical data set, and further illustrate our approach with an application to a behavioral intervention study (Janevic et al. 2003).  相似文献   

8.
This article re‐examines the F‐test based on linear combinations of the responses, or FLC test, for testing random effects in linear mixed models. In current statistical practice, the FLC test is underused and we argue that it should be reconsidered as a valuable method for use with linear mixed models. We present a new, more general derivation of the FLC test which applies to a broad class of linear mixed models where the random effects can be correlated. We highlight three advantages of the FLC test that are often overlooked in modern applications of linear mixed models, namely its computation speed, its generality, and its exactness as a test. Empirical studies provide new insight into the finite sample performance of the FLC test, identifying cases where it is competitive or even outperforms modern methods in terms of power, as well as settings in which it performs worse than simulation‐based methods for testing random effects. In all circumstances, the FLC test is faster to compute.  相似文献   

9.
Randomized clinical trials are designed to estimate the direct effect of a treatment by randomly assigning patients to receive either treatment or control. However, in some trials, patients who discontinued their initial randomized treatment are allowed to switch to another treatment. Therefore, the direct treatment effect of interest may be confounded by subsequent treatment. Moreover, the decision on whether to initiate a second‐line treatment is typically made based on time‐dependent factors that may be affected by prior treatment history. Due to these time‐dependent confounders, traditional time‐dependent Cox models may produce biased estimators of the direct treatment effect. Marginal structural models (MSMs) have been applied to estimate causal treatment effects even in the presence of time‐dependent confounders. However, the occurrence of extremely large weights can inflate the variance of the MSM estimators. In this article, we proposed a new method for estimating weights in MSMs by adaptively truncating the longitudinal inverse probabilities. This method provides balance in the bias variance trade‐off when large weights are inevitable, without the ad hoc removal of selected observations. We conducted simulation studies to explore the performance of different methods by comparing bias, standard deviation, confidence interval coverage rates, and mean square error under various scenarios. We also applied these methods to a randomized, open‐label, phase III study of patients with nonsquamous non‐small cell lung cancer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The concept of causality is naturally related to processes developing over time. Central ideas of causal inference like time‐dependent confounding (feedback) and mediation should be viewed as dynamic concepts. We shall study these concepts in the context of simple dynamic systems. Time‐dependent confounding and its implications are illustrated in a Markov model. We emphasize the distinction between average treatment effect, ATE, and treatment effect of the treated, ATT. These effects could be quite different, and we discuss the relationship between them. Mediation is studied in a stochastic differential equation model. A type of natural direct and indirect effects is considered for this model. Mediation analysis of discrete measurements from such processes may give misleading results, and one needs to consider the underlying continuous process. The dynamic and time‐continuous view of causality and mediation is an essential feature, and more attention should be payed to the time aspect in causal inference.  相似文献   

11.
This paper deals with the analysis of data from a HET‐CAMVT experiment. From a statistical perspective, such data yield many challenges. First of all, the data are typically time‐to‐event like data, which are at the same time interval censored and right truncated. In addition, one has to cope with overdispersion as well as clustering. Traditional analysis approaches ignore overdispersion and clustering and summarize the data into a continuous score that can be analysed using simple linear models. In this paper, a novel combined frailty model is developed that simultaneously captures all of the aforementioned statistical challenges posed by the data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In count data models, overdispersion of the dependent variable can be incorporated into the model if a heterogeneity term is added into the mean parameter of the Poisson distribution. We use a nonparametric estimation for the heterogeneity density based on a squared Kth-order polynomial expansion, that we generalize for panel data. A numerical illustration using an insurance dataset is discussed. Even if some statistical analyses showed no clear differences between these new models and the standard Poisson with gamma random effects, we show that the choice of the random effects distribution has a significant influence for interpreting our results.  相似文献   

13.
Observations collected over time are often autocorrelated rather than independent, and sometimes include observations below or above detection limits (i.e. censored values reported as less or more than a level of detection) and/or missing data. Practitioners commonly disregard censored data cases or replace these observations with some function of the limit of detection, which often results in biased estimates. Moreover, parameter estimation can be greatly affected by the presence of influential observations in the data. In this paper we derive local influence diagnostic measures for censored regression models with autoregressive errors of order p (hereafter, AR(p)‐CR models) on the basis of the Q‐function under three useful perturbation schemes. In order to account for censoring in a likelihood‐based estimation procedure for AR(p)‐CR models, we used a stochastic approximation version of the expectation‐maximisation algorithm. The accuracy of the local influence diagnostic measure in detecting influential observations is explored through the analysis of empirical studies. The proposed methods are illustrated using data, from a study of total phosphorus concentration, that contain left‐censored observations. These methods are implemented in the R package ARCensReg.  相似文献   

14.
Using only bivariate copulas as building blocks, regular vine copulas constitute a flexible class of high‐dimensional dependency models. However, the flexibility comes along with an exponentially increasing complexity in larger dimensions. In order to counteract this problem, we propose using statistical model selection techniques to either truncate or simplify a regular vine copula. As a special case, we consider the simplification of a canonical vine copula using a multivariate copula as previously treated by Heinen & Valdesogo ( 2009 ) and Valdesogo ( 2009 ). We validate the proposed approaches by extensive simulation studies and use them to investigate a 19‐dimensional financial data set of Norwegian and international market variables. The Canadian Journal of Statistics 40: 68–85; 2012 © 2012 Statistical Society of Canada  相似文献   

15.
Various exact tests for statistical inference are available for powerful and accurate decision rules provided that corresponding critical values are tabulated or evaluated via Monte Carlo methods. This article introduces a novel hybrid method for computing p‐values of exact tests by combining Monte Carlo simulations and statistical tables generated a priori. To use the data from Monte Carlo generations and tabulated critical values jointly, we employ kernel density estimation within Bayesian‐type procedures. The p‐values are linked to the posterior means of quantiles. In this framework, we present relevant information from the Monte Carlo experiments via likelihood‐type functions, whereas tabulated critical values are used to reflect prior distributions. The local maximum likelihood technique is employed to compute functional forms of prior distributions from statistical tables. Empirical likelihood functions are proposed to replace parametric likelihood functions within the structure of the posterior mean calculations to provide a Bayesian‐type procedure with a distribution‐free set of assumptions. We derive the asymptotic properties of the proposed nonparametric posterior means of quantiles process. Using the theoretical propositions, we calculate the minimum number of needed Monte Carlo resamples for desired level of accuracy on the basis of distances between actual data characteristics (e.g. sample sizes) and characteristics of data used to present corresponding critical values in a table. The proposed approach makes practical applications of exact tests simple and rapid. Implementations of the proposed technique are easily carried out via the recently developed STATA and R statistical packages.  相似文献   

16.
Expectiles were introduced by Newey and Powell in 1987 in the context of linear regression models. Recently, Bellini et al. revealed that expectiles can also be seen as reasonable law‐invariant risk measures. In this article, we show that the corresponding statistical functionals are continuous w.r.t. the 1‐weak topology and suitably functionally differentiable. By means of these regularity results, we can derive several properties such as consistency, asymptotic normality, bootstrap consistency and qualitative robustness of the corresponding estimators in nonparametric and parametric statistical models.  相似文献   

17.
Abstract. It is quite common in epidemiology that we wish to assess the quality of estimators on a particular set of information, whereas the estimators may use a larger set of information. Two examples are studied: the first occurs when we construct a model for an event which happens if a continuous variable is above a certain threshold. We can compare estimators based on the observation of only the event or on the whole continuous variable. The other example is that of predicting the survival based only on survival information or using in addition information on a disease. We develop modified Akaike information criterion (AIC) and Likelihood cross‐validation (LCV) criteria to compare estimators in this non‐standard situation. We show that a normalized difference of AIC has a bias equal to o ( n ? 1 ) if the estimators are based on well‐specified models; a normalized difference of LCV always has a bias equal to o ( n ? 1 ). A simulation study shows that both criteria work well, although the normalized difference of LCV tends to be better and is more robust. Moreover in the case of well‐specified models the difference of risks boils down to the difference of statistical risks which can be rather precisely estimated. For ‘compatible’ models the difference of risks is often the main term but there can also be a difference of mis‐specification risks.  相似文献   

18.
This paper focuses on a situation in which a set of treatments is associated with a response through a set of supplementary variables in linear models as well as discrete models. Under the situation, we demonstrate that the causal effect can be estimated more accurately from the set of supplementary variables. In addition, we show that the set of supplementary variables can include selection variables and proxy variables as well. Furthermore, we propose selection criteria for supplementary variables based on the estimation accuracy of causal effects. From graph structures based on our results, we can judge certain situations under which the causal effect can be estimated more accurately by supplementary variables and reliably evaluate the causal effects from observed data.  相似文献   

19.
Summary.  Method effects often occur when different methods are used for measuring the same construct. We present a new approach for modelling this kind of phenomenon, consisting of a definition of method effects and a first model, the method effect model , that can be used for data analysis. This model may be applied to multitrait–multimethod data or to longitudinal data where the same construct is measured with at least two methods at all occasions. In this new approach, the definition of the method effects is based on the theory of individual causal effects by Neyman and Rubin. Method effects are accordingly conceptualized as the individual effects of applying measurement method j instead of k . They are modelled as latent difference scores in structural equation models. A reference method needs to be chosen against which all other methods are compared. The model fit is invariant to the choice of the reference method. The model allows the estimation of the average of the individual method effects, their variance, their correlation with the traits (and other latent variables) and the correlation of different method effects among each other. Furthermore, since the definition of the method effects is in line with the theory of causality, the method effects may (under certain conditions) be interpreted as causal effects of the method. The method effect model is compared with traditional multitrait–multimethod models. An example illustrates the application of the model to longitudinal data analysing the effect of negatively (such as 'feel bad') as compared with positively formulated items (such as 'feel good') measuring mood states.  相似文献   

20.
Different longitudinal study designs require different statistical analysis methods and different methods of sample size determination. Statistical power analysis is a flexible approach to sample size determination for longitudinal studies. However, different power analyses are required for different statistical tests which arises from the difference between different statistical methods. In this paper, the simulation-based power calculations of F-tests with Containment, Kenward-Roger or Satterthwaite approximation of degrees of freedom are examined for sample size determination in the context of a special case of linear mixed models (LMMs), which is frequently used in the analysis of longitudinal data. Essentially, the roles of some factors, such as variance–covariance structure of random effects [unstructured UN or factor analytic FA0], autocorrelation structure among errors over time [independent IND, first-order autoregressive AR1 or first-order moving average MA1], parameter estimation methods [maximum likelihood ML and restricted maximum likelihood REML] and iterative algorithms [ridge-stabilized Newton-Raphson and Quasi-Newton] on statistical power of approximate F-tests in the LMM are examined together, which has not been considered previously. The greatest factor affecting statistical power is found to be the variance–covariance structure of random effects in the LMM. It appears that the simulation-based analysis in this study gives an interesting insight into statistical power of approximate F-tests for fixed effects in LMMs for longitudinal data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号