首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bayesian analyses often take for granted the assumption that the posterior distribution has at least a first moment. They often include computed or estimated posterior means. In this note, the authors show an example of a Weibull distribution parameter where the theoretical posterior mean fails to exist for commonly used proper semi–conjugate priors. They also show that posterior moments can fail to exist with commonly used noninformative priors including Jeffreys, reference and matching priors, despite the fact that the posteriors are proper. Moreover, within a broad class of priors, the predictive distribution also has no mean. The authors illustrate the problem with a simulated example. Their results demonstrate that the unwitting use of estimated posterior means may yield unjustified conclusions.  相似文献   

2.
Bayesian inference under the skew-normal family of distributions is discussed using an arbitrary proper prior for the skewness parameter. In particular, we review some results when a skew-normal prior distribution is considered. Considering this particular prior, we provide a stochastic representation of the posterior of the skewness parameter. Moreover, we obtain analytical expressions for the posterior mean and variance of the skewness parameter. The ultimate goal is to consider these results to one change point identification in the parameters of the location-scale skew-normal model. Some Latin American emerging market datasets are used to illustrate the methodology developed in this work.  相似文献   

3.
This paper analyses a linear model in which both the mean and the precision change exactly once at an unknown point in time. Posterior distributions are found for the unknown time point at which the changes occurred and for the ratio of the precisions. The Bayesian predictive distribution of k future observations is also derived. It is shown that the unconditional posterior distribution of the ratio of precisions is a mixture of F-type distributions and the predictive distribution is a mixture of multivariate t distributions.  相似文献   

4.
This investigation considers a general linear model which changes parameters exactly once during the observation period. Assuming all the parameters are unknown and a proper prior distribution, the Bayesian predictive distribution of the future observations is derived.

It is shown that the predictive distribution is a mixture of multivariate t distributions and that the mixing distribution is the marginal posterior mass function of the change point parameter.  相似文献   

5.
Partial specification of a prior distribution can be appealing to an analyst, but there is no conventional way to update a partial prior. In this paper, we show how a framework for Bayesian updating with data can be based on the Dirichlet(a) process. Within this framework, partial information predictors generalize standard minimax predictors and have interesting multiple-point shrinkage properties. Approximations to partial-information estimators for squared error loss are defined straightforwardly, and an estimate of the mean shrinks the sample mean. The proposed updating of the partial prior is a consequence of four natural requirements when the Dirichlet parameter a is continuous. Namely, the updated partial posterior should be calculable from knowledge of only the data and partial prior, it should be faithful to the full posterior distribution, it should assign positive probability to every observed event {X,}, and it should not assign probability to unobserved events not included in the partial prior specification.  相似文献   

6.
Sequences of independent random variables are observed and on the basis of these observations future values of the process are forecast. The Bayesian predictive density of k future observations for normal, exponential, and binomial sequences which change exactly once are analyzed for several cases. It is seen that the Bayesian predictive densities are mixtures of standard probability distributions. For example, with normal sequences the Bayesian predictive density is a mixture of either normal or t-distributions, depending on whether or not the common variance is known. The mixing probabilities are the same as those occurring in the corresponding posterior distribution of the mean(s) of the sequence. The predictive mass function of the number of future successes that will occur in a changing Bernoulli sequence is computed and point and interval predictors are illustrated.  相似文献   

7.
In this article, posterior distribution, posterior moments, and predictive distribution for the modified power series distributions deformed at any of a support point under linex and generalized entropy loss function are derived. It is assumed that the prior information can be summarized by a uniform, Beta, two-sided power, Gamma, or generalized Pareto distributions. The obtained results are demonstrated on the generalized Poisson and the generalized negative binomial distribution deformed at a given point.  相似文献   

8.
A generalized Type-I progressive hybrid censoring scheme was proposed recently to overcome the limitations of the progressive hybrid censoring scheme. In this article, we provide a robust Bayesian method to estimate the unknown parameters of the two-parameter exponential distribution of a generalized Type-I progressive hybrid censored sample. For each parameter, we derive the marginal posterior density functions and the corresponding Bayesian estimators under the squared error loss function. To assess the proposed method, Monte Carlo simulations are performed using a real dataset.  相似文献   

9.
Typically, in the brief discussion of Bayesian inferential methods presented at the beginning of calculus-based undergraduate or graduate mathematical statistics courses, little attention is paid to the process of choosing the parameter value(s) for the prior distribution. Even less attention is paid to the impact of these choices on the predictive distribution of the data. Reasons for this include that the posterior can be found by ignoring the predictive distribution thereby streamlining the derivation of the posterior and/or that computer software can be used to find the posterior distribution. In this paper, the binomial, negative-binomial and Poisson distributions along with their conjugate beta and gamma priors are utilized to obtain the resulting predictive distributions. It is then demonstrated that specific choices of the parameters of the priors can lead to predictive distributions with properties that might be surprising to a non-expert user of Bayesian methods.  相似文献   

10.
This study is a Bayesian analysis of a regression model with autocorrelated errors which exhibits one change in the regression parameters and where the autocorrelation parameter is unknown

Using a normal-gamma prior for all the parameters except the shift point which has a uniform distribution, the marginal posterior distribution of the regression parameters, the shift point and the precision of the errors is found. It is important to know where the shift occurred thus the main emphasis is with the posterior distribution of the shift point

A numerical study assesses the effect of the values of the shift point and the magnitude of the shift on the posterior distribution of the shift point. The posterior distribution of the shift point is more sensitive to change, which occurs in the middle of the observations than to one which occurs at an extreme of the data.  相似文献   

11.
Lu Lin   《Statistical Methodology》2006,3(4):444-455
If the form of the distribution of data is unknown, the Bayesian method fails in the parametric inference because there is no posterior distribution of the parameter. In this paper, a theoretical framework of Bayesian likelihood is introduced via the Hilbert space method, which is free of the distributions of data and the parameter. The posterior distribution and posterior score function based on given inner products are defined and, consequently, the quasi posterior distribution and quasi posterior score function are derived, respectively, as the projections of the posterior distribution and posterior score function onto the space spanned by given estimating functions. In the space spanned by data, particularly, an explicit representation for the quasi posterior score function is obtained, which can be derived as a projection of the true posterior score function onto this space. The methods of constructing conservative quasi posterior score and quasi posterior log-likelihood are proposed. Some examples are given to illustrate the theoretical results. As an application, the quasi posterior distribution functions are used to select variables for generalized linear models. It is proved that, for linear models, the variable selections via quasi posterior distribution functions are equivalent to the variable selections via the penalized residual sum of squares or regression sum of squares.  相似文献   

12.
In semiparametric inference we distinguish between the parameter of interest which may be a location parameter, and a nuisance parameter that determines the remaining shape of the sampling distribution. As was pointed out by Diaconis and Freedman the main problem in semiparametric Bayesian inference is to obtain a consistent posterior distribution for the parameter of interest. The present paper considers a semiparametric Bayesian method based on a pivotal likelihood function. It is shown that when the parameter of interest is the median, this method produces a consistent posterior distribution and is easily implemented, Numerical comparisons with classical methods and with Bayesian methods based on a Dirichlet prior are provided. It is also shown that in the case of symmetric intervals, the classical confidence coefficients have a Bayesian interpretation as the limiting posterior probability of the interval based on the Dirichlet prior with a parameter that converges to zero.  相似文献   

13.
The Box–Jenkins methodology for modeling and forecasting from univariate time series models has long been considered a standard to which other forecasting techniques have been compared. To a Bayesian statistician, however, the method lacks an important facet—a provision for modeling uncertainty about parameter estimates. We present a technique called sampling the future for including this feature in both the estimation and forecasting stages. Although it is relatively easy to use Bayesian methods to estimate the parameters in an autoregressive integrated moving average (ARIMA) model, there are severe difficulties in producing forecasts from such a model. The multiperiod predictive density does not have a convenient closed form, so approximations are needed. In this article, exact Bayesian forecasting is approximated by simulating the joint predictive distribution. First, parameter sets are randomly generated from the joint posterior distribution. These are then used to simulate future paths of the time series. This bundle of many possible realizations is used to project the future in several ways. Highest probability forecast regions are formed and portrayed with computer graphics. The predictive density's shape is explored. Finally, we discuss a method that allows the analyst to subjectively modify the posterior distribution on the parameters and produce alternate forecasts.  相似文献   

14.
This article develops combined exponentially weighted moving average (EWMA) charts for the mean and variance of a normal distribution. A Bayesian approach is used to incorporate parameter uncertainty. We first use a Bayesian predictive distribution to construct the control chart, and we then use a sampling theory approach to evaluate it under various hypothetical specifications for the data generation model. Simulations are used to compare the proposed charts for different values of both the weighing constant for the exponentially weighted moving averages and for the size of the calibration sample that is used to estimate the in-statistical-control process parameters. We also examine the separate performance of the EWMA chart for the variance.  相似文献   

15.
This paper focusses on computing the Bayesian reliability of components whose performance characteristics (degradation – fatigue and cracks) are observed during a specified period of time. Depending upon the nature of degradation data collected, we fit a monotone increasing or decreasing function for the data. Since the components are supposed to have different lifetimes, the rate of degradation is assumed to be a random variable. At a critical level of degradation, the time to failure distribution is obtained. The exponential and power degradation models are studied and exponential density function is assumed for the random variable representing the rate of degradation. The maximum likelihood estimator and Bayesian estimator of the parameter of exponential density function, predictive distribution, hierarchical Bayes approach and robustness of the posterior mean are presented. The Gibbs sampling algorithm is used to obtain the Bayesian estimates of the parameter. Illustrations are provided for the train wheel degradation data.  相似文献   

16.
The nonparametric Bayesian approach for inference regarding the unknown distribution of a random sample customarily assumes that this distribution is random and arises through Dirichlet-process mixing. Previous work within this setting has focused on the mean of the posterior distribution of this random distribution, which is the predictive distribution of a future observation given the sample. Our interest here is in learning about other features of this posterior distribution as well as about posteriors associated with functionals of the distribution of the data. We indicate how to do this in the case of linear functionals. An illustration, with a sample from a Gamma distribution, utilizes Dirichlet-process mixtures of normals to recover this distribution and its features.  相似文献   

17.
Bayesian and empirical Bayesian decision rules are exhibited for the interval estimation of the parameter 0 of a Uniform (0,θ) distribution. The estimate ?,δ>resulting in the interval [?,?+δ]suffers loss given by L(?,δ>,θ)=1-[?≦e≦?+δ]+c1((?-θ)2+(?+δ?θ)2))+c2δ. The solution is presented for prior distributions G which have bounded support, no point masses,∫θ?mdG(θ)<∞ and for some integer m. An example is presented involving a particular parametric form for G and rates of risk convergence in the empirical Bayes problem for this example are calculated.  相似文献   

18.
This article is concerned with the comparison of P-value and Bayesian measure in point null hypothesis for the variance of Normal distribution with unknown mean. First, using fixed prior for test parameter, the posterior probability is obtained and compared with the P-value when an appropriate prior is used for the mean parameter. In the second, lower bounds of the posterior probability of H0 under a reasonable class of prior are compared with the P-value. It has been shown that even in the presence of nuisance parameters, these two approaches can lead to different results in the statistical inference.  相似文献   

19.
The predictive distribution is a mixture of the original distribution model and is used for predicting a future observation. Therein, the mixing distribution is the posterior distribution of the distribution parameters in the Bayesian inference. The mixture can also be computed for the frequentist inference because the Bayesian posterior distribution has the same meaning as a frequentist confidence interval. I present arguments against the concept of predictive distribution. Examples illustrate these. The most important argument is that the predictive distribution can depend on the parameterization. An improvement of the theory of the predictive distribution is recommended.  相似文献   

20.
This article develops a control chart for a mean vector when it is monitored by a quadratic form in the exponentially weighted observation vector. A Bayesian approach is used to incorporate parameter uncertainty. We first use a Bayesian predictive distribution to construct the control chart, and we then use a sampling theory approach to evaluate it under various hypothetical specifications for the data generation model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号