首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents a consistent Generalized Method of Moments (GMM) residuals-based test of functional form for time series models. By relating two moments we deliver a vector moment condition in which at least one element must be nonzero if the model is misspecified. The test will never fail to detect misspecification of any form for large samples, and is asymptotically chi-squared under the null, allowing for fast and simple inference. A simulation study reveals randomly selecting the nuisance parameter leads to more power than supremum-tests, and can obtain empirical power nearly equivalent to the most powerful test for even relatively small n.  相似文献   

2.
A limiting distribution of the likelihood ratio statistic for the test of the equality of the q smallest eigenvalues of a covariance matrix is obtained. This distribution can be used as an alternative to the chi-squared distribution which is usually used with this test. It is shown that this new method yields reasonable significance levels for those situations in which the chi-squared approximation is inadequate.  相似文献   

3.
Graphs are presented on which the empirical distribution function can be plotted to test the assumption of normality by the Lilliefors test. A second set of graphs is presented for using the Lilliefors test on exponential distributions. The graphs allow for tests at the 10 percent, 5 percent, and 1 percent levels of significance. Use of these graphs makes it easy for students in a first course in statistics to test normal and exponential distributions without having to unravel the mystery associated with putting together a chi-squared goodness-of-fit test.  相似文献   

4.
Some recent results in the theory and applications of modified chi-squared goodness-of-fit tests are briefly discussed. It seems that for the first time power of modified chi-squared type tests for the logistic and three-parameter Weibull distributions based on moment type estimators is studied. Power of different modified tests against some alternatives for equiprobable fixed or random grouping intervals, and for Neyman–Pearson classes is investigated. It is shown that power of test statistic essentially depends on the quantity of Fisher's sample information this statistic uses. Some recommendations on implementing modified chi-squared type tests are given.  相似文献   

5.
To use the Pearson chi-squared statistic to test the fit of a continuous distribution, it is necessary to partition the support of the distribution into k cells. A common practice is to partition the support into cells with equal probabilities. In that case, the power of the chi-squared test may vary substantially with the value of k. The effects of different values of k are investigated with a Monte Carlo power study of goodness-of-fit tests for distributions where location and scale parameters are estimated from the observed data. Allowing for the best choices of k, the Pearson and log-likelihood ratio chi-squared tests are shown to have similar maximum power for wide ranges of alternatives, but this can be substantially less than the power of other well-known goodness-of-fit tests.  相似文献   

6.
When testing treatment effects in multi‐arm clinical trials, the Bonferroni method or the method of Simes 1986) is used to adjust for the multiple comparisons. When control of the family‐wise error rate is required, these methods are combined with the close testing principle of Marcus et al. (1976). Under weak assumptions, the resulting p‐values all give rise to valid tests provided that the basic test used for each treatment is valid. However, standard tests can be far from valid, especially when the endpoint is binary and when sample sizes are unbalanced, as is common in multi‐arm clinical trials. This paper looks at the relationship between size deviations of the component test and size deviations of the multiple comparison test. The conclusion is that multiple comparison tests are as imperfect as the basic tests at nominal size α/m where m is the number of treatments. This, admittedly not unexpected, conclusion implies that these methods should only be used when the component test is very accurate at small nominal sizes. For binary end‐points, this suggests use of the parametric bootstrap test. All these conclusions are supported by a detailed numerical study.  相似文献   

7.
The class of symmetric linear regression models has the normal linear regression model as a special case and includes several models that assume that the errors follow a symmetric distribution with longer-than-normal tails. An important member of this class is the t linear regression model, which is commonly used as an alternative to the usual normal regression model when the data contain extreme or outlying observations. In this article, we develop second-order asymptotic theory for score tests in this class of models. We obtain Bartlett-corrected score statistics for testing hypotheses on the regression and the dispersion parameters. The corrected statistics have chi-squared distributions with errors of order O(n ?3/2), n being the sample size. The corrections represent an improvement over the corresponding original Rao's score statistics, which are chi-squared distributed up to errors of order O(n ?1). Simulation results show that the corrected score tests perform much better than their uncorrected counterparts in samples of small or moderate size.  相似文献   

8.
We consider the issue of performing testing inferences on the parameters that index the linear regression model under heteroskedasticity of unknown form. Quasi-t test statistics use asymptotically correct standard errors obtained from heteroskedasticity-consistent covariance matrix estimators. An alternative approach involves making an assumption about the functional form of the response variances and jointly modelling mean and dispersion effects. In this paper we compare the accuracy of testing inferences made using the two approaches. We consider several different quasi-t tests and also z tests performed after estimated generalized least squares estimation which was carried out using three different estimation strategies. The numerical evidence shows that some quasi-t tests are typically considerably less size distorted in small samples than the tests carried out after the jointly modelling of mean and dispersion effects. Finally, we present and discuss two empirical applications.  相似文献   

9.
We introduce the 2nd-power skewness and kurtosis, which are interesting alternatives to the classical Pearson's skewness and kurtosis, called 3rd-power skewness and 4th-power kurtosis in our terminology. We use the sample 2nd-power skewness and kurtosis to build a powerful test of normality. This test can also be derived as Rao's score test on the asymmetric power distribution, which combines the large range of exponential tail behavior provided by the exponential power distribution family with various levels of asymmetry. We find that our test statistic is asymptotically chi-squared distributed. We also propose a modified test statistic, for which we show numerically that the distribution can be approximated for finite sample sizes with very high precision by a chi-square. Similarly, we propose a directional test based on sample 2nd-power kurtosis only, for the situations where the true distribution is known to be symmetric. Our tests are very similar in spirit to the famous Jarque–Bera test, and as such are also locally optimal. They offer the same nice interpretation, with in addition the gold standard power of the regression and correlation tests. An extensive empirical power analysis is performed, which shows that our tests are among the most powerful normality tests. Our test is implemented in an R package called PoweR.  相似文献   

10.
The nonparametric component in a partially linear model is estimated by a linear combination of fixed-knot cubic B-splines with a second-order difference penalty on the adjacent B-spline coefficients. The resulting penalized least-squares estimator is used to construct two Wald-type spline-based test statistics for the null hypothesis of the linearity of the nonparametric function. When the number of knots is fixed, the first test statistic asymptotically has the distribution of a linear combination of independent chi-squared random variables, each with one degree of freedom, under the null hypothesis. The smoothing parameter is determined by specifying a value for the asymptotically expected value of the test statistic under the null hypothesis. When the number of knots is fixed and under the null hypothesis, the second test statistic asymptotically has a chi-squared distribution with K=q+2 degrees of freedom, where q is the number of knots used for estimation. The power performances of the two proposed tests are investigated via simulation experiments, and the practicality of the proposed methodology is illustrated using a real-life data set.  相似文献   

11.
In the last few years, two adaptive tests for paired data have been proposed. One test proposed by Freidlin et al. [On the use of the Shapiro–Wilk test in two-stage adaptive inference for paired data from moderate to very heavy tailed distributions, Biom. J. 45 (2003), pp. 887–900] is a two-stage procedure that uses a selection statistic to determine which of three rank scores to use in the computation of the test statistic. Another statistic, proposed by O'Gorman [Applied Adaptive Statistical Methods: Tests of Significance and Confidence Intervals, Society for Industrial and Applied Mathematics, Philadelphia, 2004], uses a weighted t-test with the weights determined by the data. These two methods, and an earlier rank-based adaptive test proposed by Randles and Hogg [Adaptive Distribution-free Tests, Commun. Stat. 2 (1973), pp. 337–356], are compared with the t-test and to Wilcoxon's signed-rank test. For sample sizes between 15 and 50, the results show that the adaptive test proposed by Freidlin et al. and the adaptive test proposed by O'Gorman have higher power than the other tests over a range of moderate to long-tailed symmetric distributions. The results also show that the test proposed by O'Gorman has greater power than the other tests for short-tailed distributions. For sample sizes greater than 50 and for small sample sizes the adaptive test proposed by O'Gorman has the highest power for most distributions.  相似文献   

12.
We propose a multivariate extension of the univariate chi-squared normality test. Using a known result for the distribution of quadratic forms in normal variables, we show that the proposed test statistic has an approximated chi-squared distribution under the null hypothesis of multivariate normality. As in the univariate case, the new test statistic is based on a comparison of observed and expected frequencies for specified events in sample space. In the univariate case, these events are the standard class intervals, but in the multivariate extension we propose these become hyper-ellipsoidal annuli in multivariate sample space. We assess the performance of the new test using Monte Carlo simulation. Keeping the type I error rate fixed, we show that the new test has power that compares favourably with other standard normality tests, though no uniformly most powerful test has been found. We recommend the new test due to its competitive advantages.  相似文献   

13.
Two different two-sample tests for dispersion differences based on placement statistics are proposed. The means and variances of the test statistics are derived, and asymptotic normality is established for both. Variants of the proposed tests based on reversing the X and Y labels in the test statistic calculations are shown to have different small-sample properties; for both pairs of tests, one member of the pair will be resolving, the other nonresolving. The proposed tests are similar in spirit to the dispersion tests of both Mood and Hollander; comparative simulation results for these four tests are given. For small sample sizes, the powers of the proposed tests are approximately equal to the powers of the tests of both Mood and Hollander for samples from the normal, Cauchy and exponential distributions. The one-sample limiting distributions are also provided, yielding useful approximations to the exact tests when one sample is much larger than the other. A bootstrap test may alternatively be performed. The proposed test statistics may be used with lightly censored data by substituting Kaplan-Meier estimates for the empirical distribution functions.  相似文献   

14.
We study the association between bone mineral density (BMD) and body mass index (BMI) when contingency tables are constructed from the several U.S. counties, where BMD has three levels (normal, osteopenia and osteoporosis) and BMI has four levels (underweight, normal, overweight and obese). We use the Bayes factor (posterior odds divided by prior odds or equivalently the ratio of the marginal likelihoods) to construct the new test. Like the chi-squared test and Fisher's exact test, we have a direct Bayes test which is a standard test using data from each county. In our main contribution, for each county techniques of small area estimation are used to borrow strength across counties and a pooled test of independence of BMD and BMI is obtained using a hierarchical Bayesian model. Our pooled Bayes test is computed by performing a Monte Carlo integration using random samples rather than Gibbs samples. We have seen important differences among the pooled Bayes test, direct Bayes test and the Cressie-Read test that allows for some degree of sparseness, when the degree of evidence against independence is studied. As expected, we also found that the direct Bayes test is sensitive to the prior specifications but the pooled Bayes test is not so sensitive. Moreover, the pooled Bayes test has competitive power properties, and it is superior when the cell counts are small to moderate.  相似文献   

15.
This article proposes a joint test for conditional heteroscedasticity in dynamic panel data models. The test is constructed by checking the joint significance of estimates of second to pth-order serial correlation in the squares sequence of the first differenced errors. To avoid any distribution assumptions of the errors and the effects, we adopt the GMM estimation for the parameter coefficient and higher order moment estimation for the errors. Based on the estimations, a joint test is constructed for conditional heteroscedasticity in the error. The resulted test is asymptotically chi-squared under the null hypothesis and easy to implement. The small sample properties of the test are investigated by means of Monte Carlo experiments. The evidence shows that the test performs well in dynamic panel data with large number n of individuals and short periods T of time. A real data is analyzed for illustration.  相似文献   

16.
The asymptotic distributions of many classical test statistics are normal. The resulting approximations are often accurate for commonly used significance levels, 0.05 or 0.01. In genome‐wide association studies, however, the significance level can be as low as 1×10−7, and the accuracy of the p‐values can be challenging. We study the accuracies of these small p‐values are using two‐term Edgeworth expansions for three commonly used test statistics in GWAS. These tests have nuisance parameters not defined under the null hypothesis but estimable. We derive results for this general form of testing statistics using Edgeworth expansions, and find that the commonly used score test, maximin efficiency robust test and the chi‐squared test are second order accurate in the presence of the nuisance parameter, justifying the use of the p‐values obtained from these tests in the genome‐wide association studies.  相似文献   

17.
In statistical process control one typically takes periodic small samples. Statistical inferences made from these samples often assume that the samples come from normal distributions with the means and variances possibly changing over time. A multisample test of normality is proposed to test this assumption. The test statistic is the generalized distance between the standardized order statistic vector averaged across the samples and its expected value under normality. The null distribution of the statistic approaches a chi-squared distribution as the number of samples increases. A Monte Carlo study suggests that the test has desirable power properties relative to competing tests.  相似文献   

18.
The use of the correlation coefficient is suggested as a technique for summarizing and objectively evaluating the information contained in probability plots. Goodness-of-fit tests are constructed using this technique for several commonly used plotting positions for the normal distribution. Empirical sampling methods are used to construct the null distribution for these tests, which are then compared on the basis of power against certain nonnormal alternatives. Commonly used regression tests of fit are also included in the comparisons. The results indicate that use of the plotting position pi = (i - .375)/(n + .25) yields a competitive regression test of fit for normality.  相似文献   

19.
We consider a Bayesian approach to the study of independence in a two-way contingency table which has been obtained from a two-stage cluster sampling design. If a procedure based on single-stage simple random sampling (rather than the appropriate cluster sampling) is used to test for independence, the p-value may be too small, resulting in a conclusion that the null hypothesis is false when it is, in fact, true. For many large complex surveys the Rao–Scott corrections to the standard chi-squared (or likelihood ratio) statistic provide appropriate inference. For smaller surveys, though, the Rao–Scott corrections may not be accurate, partly because the chi-squared test is inaccurate. In this paper, we use a hierarchical Bayesian model to convert the observed cluster samples to simple random samples. This provides surrogate samples which can be used to derive the distribution of the Bayes factor. We demonstrate the utility of our procedure using an example and also provide a simulation study which establishes our methodology as a viable alternative to the Rao–Scott approximations for relatively small two-stage cluster samples. We also show the additional insight gained by displaying the distribution of the Bayes factor rather than simply relying on a summary of the distribution.  相似文献   

20.
The F-ratio test for equality of dispersion in two samples is by no means robust, while non-parametric tests either assume a common median, or are not very powerful. Two new permutation tests are presented, which do not suffer from either of these problems. Algorithms for Monte Carlo calculation of P values and confidence intervals are given, and the performance of the tests are studied and compared using Monte Carlo simulations for a range of distributional types. The methods used to speed up Monte Carlo calculations, e.g. stratification, are of wider applicability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号