首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The authors propose «kernel spline regression,» a method of combining spline regression and kernel smoothing by replacing the polynomial approximation for local polynomial kernel regression with the spline basis. The new approach retains the local weighting scheme and the use of a bandwidth to control the size of local neighborhood. The authors compute the bias and variance of the kernel linear spline estimator, which they compare with local linear regression. They show that kernel spline estimators can succeed in capturing the main features of the underlying curve more effectively than local polynomial regression when the curvature changes rapidly. They also show through simulation that kernel spline regression often performs better than ordinary spline regression and local polynomial regression.  相似文献   

2.
Polynomial spline regression models of low degree have proved useful in modeling responses from designed experiments in science and engineering when simple polynomial models are inadequate. Where there is uncertainty in the number and location of the knots, or breakpoints, of the spline, then designs that minimize the systematic errors resulting from model misspecification may be appropriate. This paper gives a method for constructing such all‐bias designs for a single variable spline when the distinct knots in the assumed and true models come from some specified set. A class of designs is defined in terms of the inter‐knot intervals and sufficient conditions are obtained for a design within this class to be all‐bias under linear, quadratic and cubic spline models. An example of the construction of all‐bias designs is given.  相似文献   

3.
In truncated polynomial spline or B-spline models where the covariates are measured with error, a fully Bayesian approach to model fitting requires the covariates and model parameters to be sampled at every Markov chain Monte Carlo iteration. Sampling the unobserved covariates poses a major computational problem and usually Gibbs sampling is not possible. This forces the practitioner to use a Metropolis–Hastings step which might suffer from unacceptable performance due to poor mixing and might require careful tuning. In this article we show for the cases of truncated polynomial spline or B-spline models of degree equal to one, the complete conditional distribution of the covariates measured with error is available explicitly as a mixture of double-truncated normals, thereby enabling a Gibbs sampling scheme. We demonstrate via a simulation study that our technique performs favorably in terms of computational efficiency and statistical performance. Our results indicate up to 62 and 54 % increase in mean integrated squared error efficiency when compared to existing alternatives while using truncated polynomial splines and B-splines respectively. Furthermore, there is evidence that the gain in efficiency increases with the measurement error variance, indicating the proposed method is a particularly valuable tool for challenging applications that present high measurement error. We conclude with a demonstration on a nutritional epidemiology data set from the NIH-AARP study and by pointing out some possible extensions of the current work.  相似文献   

4.
Asymptotic distributions of the maximum likelihood estimators of the regression coefficients and knot points for the polynomial spline regression models with unknown knots and AR(1) errors have been derived by Chan (1989). Chan showed that under some mild conditions the maximum likelihood estimators, after suitable standardization, asymptotically follow normal distributions as n diverges to infinity. For the calculations of the maximum likelihood estimators, iterative methods must be applied. But this is not easy to implement for the model considered. In this paper, we suggested an alternative method to compute the estimates of the regression parameters and knots. It is shown that the estimates obtained by this method are asymptotically equivalent to the maximum likelihood estimates considered by Chan.  相似文献   

5.
A plug-in the number of interior knots (NIKs) selector is proposed for polynomial spline estimation in nonparametric regression. The existence and properties of the optimal NIKs for spline regression are established by minimising the weighted mean integrated squared error. We obtain plug-in formulae for the optimal NIKs based on the theoretical results of asymptotic optimality, and develop strategies for choosing the NIKs of the spline estimator. The proposed NIKs selection method is tested on our simulated data with quite satisfactory performance, and is illustrated by analysing a fossil data set.  相似文献   

6.
ABSTRACT

We propose a new unsupervised learning algorithm to fit regression mixture models with unknown number of components. The developed approach consists in a penalized maximum likelihood estimation carried out by a robust expectation–maximization (EM)-like algorithm. We derive it for polynomial, spline, and B-spline regression mixtures. The proposed learning approach is unsupervised: (i) it simultaneously infers the model parameters and the optimal number of the regression mixture components from the data as the learning proceeds, rather than in a two-fold scheme as in standard model-based clustering using afterward model selection criteria, and (ii) it does not require accurate initialization unlike the standard EM for regression mixtures. The developed approach is applied to curve clustering problems. Numerical experiments on simulated and real data show that the proposed algorithm performs well and provides accurate clustering results, and confirm its benefit for practical applications.  相似文献   

7.
The literature pertaining to splines in regression analysis is reviewed. Spline regression is motivated as a simple extension of the basic polynomial regression model. Using this framework, the concepts of fixed and variable knot spline regression are developed and corresponding inferential procedures are considered. Smoothing splines are also seen to be an extension of polynomial regression and various optimality properties, as well as inferential and diagnostic methods, for these types of splines are discussed.  相似文献   

8.
Penalized spline regression using a mixed effects representation is one of the most popular nonparametric regression tools to estimate an unknown regression function $f(\cdot )$ . In this context testing for polynomial regression against a general alternative is equivalent to testing for a zero variance component. In this paper, we fill the gap between different published null distributions of the corresponding restricted likelihood ratio test under different assumptions. We show that: (1) the asymptotic scenario is determined by the choice of the penalty and not by the choice of the spline basis or number of knots; (2) non-standard asymptotic results correspond to common penalized spline penalties on derivatives of $f(\cdot )$ , which ensure good power properties; and (3) standard asymptotic results correspond to penalized spline penalties on $f(\cdot )$ itself, which lead to sizeable power losses under smooth alternatives. We provide simple and easy to use guidelines for the restricted likelihood ratio test in this context.  相似文献   

9.
Optimal designs are required to make efficient statistical experiments. By using canonical moments, in 1980, Studden found Ds-optimal designs for polynomial regression models. On the other hand, integrable systems are dynamical systems whose solutions can be written down concretely. In this paper, polynomial regression models through a fixed point are discussed. In order to calculate D-optimal designs for these models, a useful relationship between canonical moments and discrete integrable systems is introduced. By using canonical moments and discrete integrable systems, a new algorithm for calculating D-optimal designs for these models is proposed.  相似文献   

10.
The basic idea of an interaction spline model was presented in Barry (1983). The general interaction spline models were proposed by Wahba (1986). The purely periodic spline model, a special case of the general interaction spline models, is considered in this paper. A stepwise approach using generalized cross validation (GCV) for fitting the model is proposed. Based on the nice orthogonality properties of the purely periodic functions, the stepwise approach is a promising method for the interaction spline model. The approach can also be generalized to the non-purely-periodic spline models. But this is no done here.  相似文献   

11.
Spatially-adaptive Penalties for Spline Fitting   总被引:2,自引:0,他引:2  
The paper studies spline fitting with a roughness penalty that adapts to spatial heterogeneity in the regression function. The estimates are p th degree piecewise polynomials with p − 1 continuous derivatives. A large and fixed number of knots is used and smoothing is achieved by putting a quadratic penalty on the jumps of the p th derivative at the knots. To be spatially adaptive, the logarithm of the penalty is itself a linear spline but with relatively few knots and with values at the knots chosen to minimize the generalized cross validation (GCV) criterion. This locally-adaptive spline estimator is compared with other spline estimators in the literature such as cubic smoothing splines and knot-selection techniques for least squares regression. Our estimator can be interpreted as an empirical Bayes estimate for a prior allowing spatial heterogeneity. In cases of spatially heterogeneous regression functions, empirical Bayes confidence intervals using this prior achieve better pointwise coverage probabilities than confidence intervals based on a global-penalty parameter. The method is developed first for univariate models and then extended to additive models.  相似文献   

12.
This article considers a nonparametric additive seemingly unrelated regression model with autoregressive errors, and develops estimation and inference procedures for this model. Our proposed method first estimates the unknown functions by combining polynomial spline series approximations with least squares, and then uses the fitted residuals together with the smoothly clipped absolute deviation (SCAD) penalty to identify the error structure and estimate the unknown autoregressive coefficients. Based on the polynomial spline series estimator and the fitted error structure, a two-stage local polynomial improved estimator for the unknown functions of the mean is further developed. Our procedure applies a prewhitening transformation of the dependent variable, and also takes into account the contemporaneous correlations across equations. We show that the resulting estimator possesses an oracle property, and is asymptotically more efficient than estimators that neglect the autocorrelation and/or contemporaneous correlations of errors. We investigate the small sample properties of the proposed procedure in a simulation study.  相似文献   

13.
Functional linear models are useful in longitudinal data analysis. They include many classical and recently proposed statistical models for longitudinal data and other functional data. Recently, smoothing spline and kernel methods have been proposed for estimating their coefficient functions nonparametrically but these methods are either intensive in computation or inefficient in performance. To overcome these drawbacks, in this paper, a simple and powerful two-step alternative is proposed. In particular, the implementation of the proposed approach via local polynomial smoothing is discussed. Methods for estimating standard deviations of estimated coefficient functions are also proposed. Some asymptotic results for the local polynomial estimators are established. Two longitudinal data sets, one of which involves time-dependent covariates, are used to demonstrate the approach proposed. Simulation studies show that our two-step approach improves the kernel method proposed by Hoover and co-workers in several aspects such as accuracy, computational time and visual appeal of the estimators.  相似文献   

14.
Local Likelihood Estimation in Generalized Additive Models   总被引:2,自引:0,他引:2  
ABSTRACT.  Generalized additive models are a popular class of multivariate non-parametric regression models, due in large part to the ease of use of the local scoring estimation algorithm. However, the theoretical properties of the local scoring estimator are poorly understood. In this article, we propose a local likelihood estimator for generalized additive models that is closely related to the local scoring estimator fitted by local polynomial regression. We derive the statistical properties of the estimator and show that it achieves the same asymptotic convergence rate as a one-dimensional local polynomial regression estimator. We also propose a wild bootstrap estimator for calculating point-wise confidence intervals for the additive component functions. The practical behaviour of the proposed estimator is illustrated through a simulation experiment.  相似文献   

15.
In conditional logspline modelling, the logarithm of the conditional density function, log f(y|x), is modelled by using polynomial splines and their tensor products. The parameters of the model (coefficients of the spline functions) are estimated by maximizing the conditional log-likelihood function. The resulting estimate is a density function (positive and integrating to one) and is twice continuously differentiable. The estimate is used further to obtain estimates of regression and quantile functions in a natural way. An automatic procedure for selecting the number of knots and knot locations based on minimizing a variant of the AIC is developed. An example with real data is given. Finally, extensions and further applications of conditional logspline models are discussed.  相似文献   

16.
Thin plate regression splines   总被引:2,自引:0,他引:2  
Summary. I discuss the production of low rank smoothers for d  ≥ 1 dimensional data, which can be fitted by regression or penalized regression methods. The smoothers are constructed by a simple transformation and truncation of the basis that arises from the solution of the thin plate spline smoothing problem and are optimal in the sense that the truncation is designed to result in the minimum possible perturbation of the thin plate spline smoothing problem given the dimension of the basis used to construct the smoother. By making use of Lanczos iteration the basis change and truncation are computationally efficient. The smoothers allow the use of approximate thin plate spline models with large data sets, avoid the problems that are associated with 'knot placement' that usually complicate modelling with regression splines or penalized regression splines, provide a sensible way of modelling interaction terms in generalized additive models, provide low rank approximations to generalized smoothing spline models, appropriate for use with large data sets, provide a means for incorporating smooth functions of more than one variable into non-linear models and improve the computational efficiency of penalized likelihood models incorporating thin plate splines. Given that the approach produces spline-like models with a sparse basis, it also provides a natural way of incorporating unpenalized spline-like terms in linear and generalized linear models, and these can be treated just like any other model terms from the point of view of model selection, inference and diagnostics.  相似文献   

17.
Summary.  Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider approximate Bayesian inference in a popular subset of structured additive regression models, latent Gaussian models , where the latent field is Gaussian, controlled by a few hyperparameters and with non-Gaussian response variables. The posterior marginals are not available in closed form owing to the non-Gaussian response variables. For such models, Markov chain Monte Carlo methods can be implemented, but they are not without problems, in terms of both convergence and computational time. In some practical applications, the extent of these problems is such that Markov chain Monte Carlo sampling is simply not an appropriate tool for routine analysis. We show that, by using an integrated nested Laplace approximation and its simplified version, we can directly compute very accurate approximations to the posterior marginals. The main benefit of these approximations is computational: where Markov chain Monte Carlo algorithms need hours or days to run, our approximations provide more precise estimates in seconds or minutes. Another advantage with our approach is its generality, which makes it possible to perform Bayesian analysis in an automatic, streamlined way, and to compute model comparison criteria and various predictive measures so that models can be compared and the model under study can be challenged.  相似文献   

18.
In this paper we provide a broad introduction to the topic of computer experiments. We begin by briefly presenting a number of applications with different types of output or different goals. We then review modelling strategies, including the popular Gaussian process approach, as well as variations and modifications. Other strategies that are reviewed are based on polynomial regression, non-parametric regression and smoothing spline ANOVA. The issue of multi-level models, which combine simulators of different resolution in the same experiment, is also addressed. Special attention is given to modelling techniques that are suitable for functional data. To conclude the modelling section, we discuss calibration, validation and verification. We then review design strategies including Latin hypercube designs and space-filling designs and their adaptation to computer experiments. We comment on a number of special issues, such as designs for multi-level simulators, nested factors and determination of experiment size.  相似文献   

19.
Additive models are often applied in statistical learning which allow linear and nonlinear predictors to coexist. In this article we adapt existing boosting methods for both mean regression and quantile regression in additive models which can simultaneously identify nonlinear, linear and zero predictors. We use gradient boosting in which simple linear regression and univariate penalized spline are used as base learners. Twin boosting is applied to achieve better variable selection accuracy. Simulation studies as well as real data applications illustrate the strength of our proposed methods.  相似文献   

20.
Bayesian MARS   总被引:1,自引:0,他引:1  
A Bayesian approach to multivariate adaptive regression spline (MARS) fitting (Friedman, 1991) is proposed. This takes the form of a probability distribution over the space of possible MARS models which is explored using reversible jump Markov chain Monte Carlo methods (Green, 1995). The generated sample of MARS models produced is shown to have good predictive power when averaged and allows easy interpretation of the relative importance of predictors to the overall fit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号