首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In linear regression the structure of the hat matrix plays an important part in regression diagnostics. In this note we investigate the properties of the hat matrix for regression with censored responses in the presence of one or more explanatory variables observed without censoring. The censored points in the scatterplot are renovated to positions had they been observed without censoring in a renovation process based on Buckley-James censored regression estimators. This allows natural links to be established with the structure of ordinary least squares estimators. In particular, we show that the renovated hat matrix may be partitioned in a manner which assists in deciding whether further explanatory variables should be added to the linear model. The added variable plot for regression with censored data is developed as a diagnostic tool for this decision process.  相似文献   

2.
In longitudinal data analysis, efficient estimation of regression coefficients requires a correct specification of certain covariance structure, and efficient estimation of covariance matrix requires a correct specification of mean regression model. In this article, we propose a general semiparametric model for the mean and the covariance simultaneously using the modified Cholesky decomposition. A regression spline-based approach within the framework of generalized estimating equations is proposed to estimate the parameters in the mean and the covariance. Under regularity conditions, asymptotic properties of the resulting estimators are established. Extensive simulation is conducted to investigate the performance of the proposed estimator and in the end a real data set is analysed using the proposed approach.  相似文献   

3.
We develop local influence diagnostics to detect influential subjects when generalized linear mixed models are fitted to incomplete longitudinal overdispersed count data. The focus is on the influence stemming from the dropout model specification. In particular, the effect of small perturbations around an MAR specification are examined. The method is applied to data from a longitudinal clinical trial in epileptic patients. The effect on models allowing for overdispersion is contrasted with that on models that do not.  相似文献   

4.
Efficient estimation of the regression coefficients in longitudinal data analysis requires a correct specification of the covariance structure. If misspecification occurs, it may lead to inefficient or biased estimators of parameters in the mean. One of the most commonly used methods for handling the covariance matrix is based on simultaneous modeling of the Cholesky decomposition. Therefore, in this paper, we reparameterize covariance structures in longitudinal data analysis through the modified Cholesky decomposition of itself. Based on this modified Cholesky decomposition, the within-subject covariance matrix is decomposed into a unit lower triangular matrix involving moving average coefficients and a diagonal matrix involving innovation variances, which are modeled as linear functions of covariates. Then, we propose a fully Bayesian inference for joint mean and covariance models based on this decomposition. A computational efficient Markov chain Monte Carlo method which combines the Gibbs sampler and Metropolis–Hastings algorithm is implemented to simultaneously obtain the Bayesian estimates of unknown parameters, as well as their standard deviation estimates. Finally, several simulation studies and a real example are presented to illustrate the proposed methodology.  相似文献   

5.
Summary.  Model selection for marginal regression analysis of longitudinal data is challenging owing to the presence of correlation and the difficulty of specifying the full likelihood, particularly for correlated categorical data. The paper introduces a novel Bayesian information criterion type model selection procedure based on the quadratic inference function, which does not require the full likelihood or quasi-likelihood. With probability approaching 1, the criterion selects the most parsimonious correct model. Although a working correlation matrix is assumed, there is no need to estimate the nuisance parameters in the working correlation matrix; moreover, the model selection procedure is robust against the misspecification of the working correlation matrix. The criterion proposed can also be used to construct a data-driven Neyman smooth test for checking the goodness of fit of a postulated model. This test is especially useful and often yields much higher power in situations where the classical directional test behaves poorly. The finite sample performance of the model selection and model checking procedures is demonstrated through Monte Carlo studies and analysis of a clinical trial data set.  相似文献   

6.
This paper discusses biplots of the between-set correlation matrix obtained by canonical correlation analysis. It is shown that these biplots can be enriched with the representation of the cases of the original data matrices. A representation of the cases that is optimal in the generalized least squares sense is obtained by the superposition of a scatterplot of the canonical variates on the biplot of the between-set correlation matrix. Goodness of fit statistics for all correlation and data matrices involved in canonical correlation analysis are discussed. It is shown that adequacy and redundancy coefficients are in fact statistics that express the goodness of fit of the original data matrices in the biplot. The within-set correlation matrix that is represented in standard coordinates always has a better goodness of fit than the within-set correlation matrix that is represented in principal coordinates. Given certain scalings, the scalar products between variable vectors approximate correlations better than the cosines of angles between variable vectors. Several data sets are used to illustrate the results.  相似文献   

7.
The recent literature on time series has developed a lot of models for the analysis of the dynamic conditional correlation, involving the same variable observed in different locations; very often, in this framework, the consideration of the spatial interactions is omitted. We propose to extend a time-varying conditional correlation model (following an autoregressive moving average dynamics) to include the spatial effects, with a specification depending on the local spatial interactions. The spatial part is based on a fixed symmetric weight matrix, called Gaussian kernel matrix, but its effect will vary along the time depending on the degree of time correlation in a certain period. We show the theoretical aspects, with the support of simulation experiments, and apply this methodology to two space–time data sets, in a demographic and a financial framework, respectively.  相似文献   

8.
In this article, we consider a semivarying coefficient model with application to longitudinal data. In order to accommodate the within-group correlation, we apply the block empirical likelihood procedure to semivarying coefficient longitudinal data model, and prove a nonparametric version of Wilks' theorem which can be used to construct the block empirical likelihood confidence region with asymptotically correct coverage probability for the parametric component. In comparison with normal approximations, the proposed method does not require a consistent estimator for the asymptotic covariance matrix, making it easier to conduct inference for the model's parametric component. Simulations demonstrate how the proposed method works.  相似文献   

9.
To build a linear mixed effects model, one needs to specify the random effects and often the associated parametrized covariance matrix structure. Inappropriate specification of the structures can result in the covariance parameters of the model not identifiable. Non-identifiability can result in extraordinary wide confidence intervals, and unreliable parameter inference. Sometimes software produces implication of model non-identifiability, but not always. In the simulation of fitting non-identifiable models we tried, about half of the times the software output did not look abnormal. We derive necessary and sufficient conditions of covariance parameters identifiability which does not require any prior model fitting. The results are easy to implement and are applicable to commonly used covariance matrix structures.  相似文献   

10.
Abstract

Missing data arise frequently in clinical and epidemiological fields, in particular in longitudinal studies. This paper describes the core features of an R package wgeesel, which implements marginal model fitting (i.e., weighted generalized estimating equations, WGEE; doubly robust GEE) for longitudinal data with dropouts under the assumption of missing at random. More importantly, this package comprehensively provide existing information criteria for WGEE model selection on marginal mean or correlation structures. Also, it can serve as a valuable tool for simulating longitudinal data with missing outcomes. Lastly, a real data example and simulations are presented to illustrate and validate our package.  相似文献   

11.
A characterization of GLMs is given. Modification of the Gaussian GEE1, modified GEE1, was applied to heteroscedastic longitudinal data, to which linear mixed-effects models are usually applied. The modified GEE1 models scale multivariate data to homoscedastic data maintaining the correlation structure and apply usual GEE1 to homoscedastic data, which needs no-diagnostics for diagonal variances. Relationships among multivariate linear regression methods, ordinary/generalized LS, naïve/modified GEE1, and linear mixed-effects models were discussed. An application showed modified GEE1 gave most efficient parameter estimation. Correct specification of the main diagonals of heteroscedastic data variance appears to be more important for efficient mean parameter estimation.  相似文献   

12.
The problem of analyzing and modeling incomplete longitudinal data arising from clinical and epidemiological studies are discussed, A method for handling arbitrarily missing observations under the intra class correlation structure and a polynomial model is developed. Explicit expressions for likelihood equations and information matrix for a second degree polynomial model are provided. The method is illustrated through an example.  相似文献   

13.
Correlated data are commonly analyzed using models constructed using population-averaged generalized estimating equations (GEEs). The specification of a population-averaged GEE model includes selection of a structure describing the correlation of repeated measures. Accurate specification of this structure can improve efficiency, whereas the finite-sample estimation of nuisance correlation parameters can inflate the variances of regression parameter estimates. Therefore, correlation structure selection criteria should penalize, or account for, correlation parameter estimation. In this article, we compare recently proposed penalties in terms of their impacts on correlation structure selection and regression parameter estimation, and give practical considerations for data analysts. Supplementary materials for this article are available online.  相似文献   

14.
Generalized estimating equations (GEE) is one of the most commonly used methods for regression analysis of longitudinal data, especially with discrete outcomes. The GEE method accounts for the association among the responses of a subject through a working correlation matrix and its correct specification ensures efficient estimation of the regression parameters in the marginal mean regression model. This study proposes a predicted residual sum of squares (PRESS) statistic as a working correlation selection criterion in GEE. A simulation study is designed to assess the performance of the proposed GEE PRESS criterion and to compare its performance with its counterpart criteria in the literature. The results show that the GEE PRESS criterion has better performance than the weighted error sum of squares SC criterion in all cases but is surpassed in performance by the Gaussian pseudo-likelihood criterion. Lastly, the working correlation selection criteria are illustrated with data from the Coronary Artery Risk Development in Young Adults study.  相似文献   

15.
We present a Bayesian analysis framework for matrix-variate normal data with dependency structures induced by rows and columns. This framework of matrix normal models includes prior specifications, posterior computation using Markov chain Monte Carlo methods, evaluation of prediction uncertainty, model structure search, and extensions to multidimensional arrays. Compared with Bayesian probabilistic matrix factorization, which integrates a Gaussian prior for single row of the data matrix, our proposed model, namely Bayesian hierarchical kernelized probabilistic matrix factorization, imposes Gaussian Process priors over multiple rows of the matrix. Hence, the learned model explicitly captures the underlying correlation among the rows and the columns. In addition, our method requires no specific assumptions like independence of latent factors for rows and columns, which obtains more flexibility for modeling real data compared to existing works. Finally, the proposed framework can be adapted to a wide range of applications, including multivariate analysis, times series, and spatial modeling. Experiments highlight the superiority of the proposed model in handling model uncertainty and model optimization.  相似文献   

16.
As researchers increasingly rely on linear mixed models to characterize longitudinal data, there is a need for improved techniques for selecting among this class of models which requires specification of both fixed and random effects via a mean model and variance-covariance structure. The process is further complicated when fixed and/or random effects are non nested between models. This paper explores the development of a hypothesis test to compare non nested linear mixed models based on extensions of the work begun by Sir David Cox. We assess the robustness of this approach for comparing models containing correlated measures of body fat for predicting longitudinal cardiometabolic risk.  相似文献   

17.
Longitudinal data often require a combination of flexible time trends and individual-specific random effects. For example, our methodological developments are motivated by a study on longitudinal body mass index profiles of children collected with the aim to gain a better understanding of factors driving childhood obesity. The high amount of nonlinearity and heterogeneity in these data and the complexity of the data set with a large number of observations, long longitudinal profiles and clusters of observations with specific deviations from the population model make the application challenging and prevent the application of standard growth curve models. We propose a fully Bayesian approach based on Markov chain Monte Carlo simulation techniques that allows for the semiparametric specification of both the trend function and the random effects distribution. Bayesian penalized splines are considered for the former, while a Dirichlet process mixture (DPM) specification allows for an adaptive amount of deviations from normality for the latter. The advantages of such DPM prior structures for random effects are investigated in terms of a simulation study to improve the understanding of the model specification before analyzing the childhood obesity data.  相似文献   

18.
We describe a mixed-effect hurdle model for zero-inflated longitudinal count data, where a baseline variable is included in the model specification. Association between the count data process and the endogenous baseline variable is modeled through a latent structure, assumed to be dependent across equations. We show how model parameters can be estimated in a finite mixture context, allowing for overdispersion, multivariate association and endogeneity of the baseline variable. The model behavior is investigated through a large-scale simulation experiment. An empirical example on health care utilization data is provided.  相似文献   

19.
Abstract. In this paper, conditional on random family effects, we consider an auto‐regression model for repeated count data and their corresponding time‐dependent covariates, collected from the members of a large number of independent families. The count responses, in such a set up, unconditionally exhibit a non‐stationary familial–longitudinal correlation structure. We then take this two‐way correlation structure into account, and develop a generalized quasilikelihood (GQL) approach for the estimation of the regression effects and the familial correlation index parameter, whereas the longitudinal correlation parameter is estimated by using the well‐known method of moments. The performance of the proposed estimation approach is examined through a simulation study. Some model mis‐specification effects are also studied. The estimation methodology is illustrated by analysing real life healthcare utilization count data collected from 36 families of size four over a period of 4 years.  相似文献   

20.
The estimation of the covariance matrix is important in the analysis of bivariate longitudinal data. A good estimator for the covariance matrix can improve the efficiency of the estimators of the mean regression coefficients. Furthermore, the covariance estimation itself is also of interest, but it is a challenging job to model the covariance matrix of bivariate longitudinal data due to the complex structure and positive definite constraint. In addition, most of existing approaches are based on the maximum likelihood, which is very sensitive to outliers or heavy-tail error distributions. In this article, an adaptive robust estimation method is proposed for bivariate longitudinal data. Unlike the existing likelihood-based methods, the proposed method can adapt to different error distributions. Specifically, at first, we utilize the modified Cholesky block decomposition to parameterize the covariance matrices. Secondly, we apply the bounded Huber's score function to develop a set of robust generalized estimating equations to estimate the parameters both in the mean and the covariance models simultaneously. A data-driven approach is presented to select the parameter c in the Huber's score function, which can ensure that the proposed method is robust and efficient. A simulation study and a real data analysis are conducted to illustrate the robustness and efficiency of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号