首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 363 毫秒
1.
Modelling count data is one of the most important issues in statistical research. In this paper, a new probability mass function is introduced by discretizing the continuous failure model of the Lindley distribution. The model obtained is over-dispersed and competitive with the Poisson distribution to fit automobile claim frequency data. After revising some of its properties a compound discrete Lindley distribution is obtained in closed form. This model is suitable to be applied in the collective risk model when both number of claims and size of a single claim are implemented into the model. The new compound distribution fades away to zero much more slowly than the classical compound Poisson distribution, being therefore suitable for modelling extreme data.  相似文献   

2.
The zero truncated inverse Gaussian–Poisson model, obtained by first mixing the Poisson model assuming its expected value has an inverse Gaussian distribution and then truncating the model at zero, is very useful when modelling frequency count data. A Bayesian analysis based on this statistical model is implemented on the word frequency counts of various texts, and its validity is checked by exploring the posterior distribution of the Pearson errors and by implementing posterior predictive consistency checks. The analysis based on this model is useful because it allows one to use the posterior distribution of the model mixing density as an approximation of the posterior distribution of the density of the word frequencies of the vocabulary of the author, which is useful to characterize the style of that author. The posterior distribution of the expectation and of measures of the variability of that mixing distribution can be used to assess the size and diversity of his vocabulary. An alternative analysis is proposed based on the inverse Gaussian-zero truncated Poisson mixture model, which is obtained by switching the order of the mixing and the truncation stages. Even though this second model fits some of the word frequency data sets more accurately than the first model, in practice the analysis based on it is not as useful because it does not allow one to estimate the word frequency distribution of the vocabulary.  相似文献   

3.
在非寿险损失预测的广义线性模型中,通常假设损失次数与损失强度相互独立,事实上二者之间往往存在一定的相依关系,可通过copula函数来刻画.在损失已经发生的条件下,假设损失次数服从零截断泊松分布,损失强度服从伽玛分布,可以建立损失次数与损失强度相互依赖的copula回归模型.把损失强度的分布扩展到逆高斯分布,并将此模型应用于一组车险保单数据进行实证研究.结果表明:该模型不但在损失预测方面优于独立假设下的广义线性模型,而且也优于损失强度服从伽马分布假设下的copula回归模型.  相似文献   

4.
Bayesian methods are often used to reduce the sample sizes and/or increase the power of clinical trials. The right choice of the prior distribution is a critical step in Bayesian modeling. If the prior not completely specified, historical data may be used to estimate it. In the empirical Bayesian analysis, the resulting prior can be used to produce the posterior distribution. In this paper, we describe a Bayesian Poisson model with a conjugate Gamma prior. The parameters of Gamma distribution are estimated in the empirical Bayesian framework under two estimation schemes. The straightforward numerical search for the maximum likelihood (ML) solution using the marginal negative binomial distribution is unfeasible occasionally. We propose a simplification to the maximization procedure. The Markov Chain Monte Carlo method is used to create a set of Poisson parameters from the historical count data. These Poisson parameters are used to uniquely define the Gamma likelihood function. Easily computable approximation formulae may be used to find the ML estimations for the parameters of gamma distribution. For the sample size calculations, the ML solution is replaced by its upper confidence limit to reflect an incomplete exchangeability of historical trials as opposed to current studies. The exchangeability is measured by the confidence interval for the historical rate of the events. With this prior, the formula for the sample size calculation is completely defined. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

5.
In many settings it is useful to have bounds on the total variation distance between some random variable Z and its shifted version Z+1. For example, such quantities are often needed when applying Stein's method for probability approximation. This note considers one way in which such bounds can be derived, in cases where Z is either the equilibrium distribution of some birth-death process or the mixture of such a distribution. Applications of these bounds are given to translated Poisson and compound Poisson approximations for Poisson mixtures and the Pólya distribution.  相似文献   

6.
孟生旺  杨亮 《统计研究》2015,32(11):97-103
索赔频率预测是非寿险费率厘定的重要组成部分。最常使用的索赔频率预测模型是泊松回归和负二项回归,以及与它们相对应的零膨胀回归模型。但是,当索赔次数观察值既具有零膨胀特征,又存在组内相依结构时,上述模型都不能很好地拟合实际数据。为此,本文在泊松分布、负二项分布、广义泊松分布、P型负二项分布等条件下分别建立了随机效应零膨胀损失次数回归模型。为了改进模型的预测效果,对于连续型的解释变量,还引入了二次平滑项,并建立了结构性零比例与解释变量之间的回归关系。基于一组实际索赔次数数据的实证分析结果表明,该模型可以显著改进现有模型的拟合效果。  相似文献   

7.
通过对航班运行流程闭环不同阶段的分解分析,识别出航班延误的关键原因包括流量控制、军事活动、天气等不可控因素和安检、旅客、机械故障、机场、公共安全等可控因素。运用数理推导和实证分析,验证了飞机起飞到达服从泊松分布,航班延误符合指数分布。通过构建航班延误总动态排队模型,并基于典型机场数据的模拟仿真分析,证明各因素引发的航班延误频率高低及其影响程度并非完全一一对应。航空公司因素发生频率最高、影响最大;流量控制发生频率较高、影响大;天气因素发生频率较高、影响较大;军事活动发生频率一般,但影响大;机械故障频率较低、影响较大;机场因素频率较低、影响较小。  相似文献   

8.
In this study, we deal with the problem of overdispersion beyond extra zeros for a collection of counts that can be correlated. Poisson, negative binomial, zero-inflated Poisson and zero-inflated negative binomial distributions have been considered. First, we propose a multivariate count model in which all counts follow the same distribution and are correlated. Then we extend this model in a sense that correlated counts may follow different distributions. To accommodate correlation among counts, we have considered correlated random effects for each individual in the mean structure, thus inducing dependency among common observations to an individual. The method is applied to real data to investigate variation in food resources use in a species of marsupial in a locality of the Brazilian Cerrado biome.  相似文献   

9.
Summary.  A useful discrete distribution (the Conway–Maxwell–Poisson distribution) is revived and its statistical and probabilistic properties are introduced and explored. This distribution is a two-parameter extension of the Poisson distribution that generalizes some well-known discrete distributions (Poisson, Bernoulli and geometric). It also leads to the generalization of distributions derived from these discrete distributions (i.e. the binomial and negative binomial distributions). We describe three methods for estimating the parameters of the Conway–Maxwell–Poisson distribution. The first is a fast simple weighted least squares method, which leads to estimates that are sufficiently accurate for practical purposes. The second method, using maximum likelihood, can be used to refine the initial estimates. This method requires iterations and is more computationally intensive. The third estimation method is Bayesian. Using the conjugate prior, the posterior density of the parameters of the Conway–Maxwell–Poisson distribution is easily computed. It is a flexible distribution that can account for overdispersion or underdispersion that is commonly encountered in count data. We also explore two sets of real world data demonstrating the flexibility and elegance of the Conway–Maxwell–Poisson distribution in fitting count data which do not seem to follow the Poisson distribution.  相似文献   

10.
This paper proposes a simple and flexible count data regression model which is able to incorporate overdispersion (the variance is greater than the mean) and which can be considered a competitor to the Poisson model. As is well known, this classical model imposes the restriction that the conditional mean of each count variable must equal the conditional variance. Nevertheless, for the common case of well-dispersed counts the Poisson regression may not be appropriate, while the count regression model proposed here is potentially useful. We consider an application to model counts of medical care utilization by the elderly in the USA using a well-known data set from the National Medical Expenditure Survey (1987), where the dependent variable is the number of stays after hospital admission, and where 10 explanatory variables are analysed.  相似文献   

11.
The purpose of the study is to estimate the population size under a truncated count model that accounts for heterogeneity. The proposed estimator is based on the Conway–Maxwell–Poisson distribution. The benefit of using the Conway–Maxwell–Poisson distribution is that it includes the Bernoulli, the Geometric and the Poisson distributions as special cases and, furthermore, allows for heterogeneity. Parameter estimates can be obtained by exploiting the ratios of successive frequency counts in a weighted linear regression framework. The results of the comparisons with Turing’s, the maximum likelihood Poisson, Zelterman’s and Chao’s estimators reveal that our proposal can be beneficially used. Furthermore, our proposal outperforms its competitors under all heterogeneous settings. The empirical examples consider the homogeneous case and several heterogeneous cases, each with its own features, and provide interesting insights on the behavior of the estimators.  相似文献   

12.
Frailty models can be fit as mixed-effects Poisson models after transforming time-to-event data to the Poisson model framework. We assess, through simulations, the robustness of Poisson likelihood estimation for Cox proportional hazards models with log-normal frailties under misspecified frailty distribution. The log-gamma and Laplace distributions were used as true distributions for frailties on a natural log scale. Factors such as the magnitude of heterogeneity, censoring rate, number and sizes of groups were explored. In the simulations, the Poisson modeling approach that assumes log-normally distributed frailties provided accurate estimates of within- and between-group fixed effects even under a misspecified frailty distribution. Non-robust estimation of variance components was observed in the situations of substantial heterogeneity, large event rates, or high data dimensions.  相似文献   

13.
在非寿险分类费率厘定中,泊松回归模型是最常使用的索赔频率预测模型,但实际的索赔频率数据往往存在过离散特征,使泊松回归模型的结果缺乏可靠性.因此,讨论处理过离散问题的各种回归模型,包括负二项回归模型、泊松-逆高斯回归模型、泊松-对数正态回归模型、广义泊松回归模型、双泊松回归模型、混合负二项回归模型、混合二项回归模型、Delaporte回归模型和Sichel回归模型,并对其进行系统比较研究认为:这些模型都可以看做是对泊松回归模型的推广,可以用于处理各种不同过离散程度的索赔频率数据,从而改善费率厘定的效果;同时应用一组实际的汽车保险数据,讨论这些模型的具体应用.  相似文献   

14.
In this paper, we introduce a new lifetime distribution by compounding exponential and Poisson–Lindley distributions, named the exponential Poisson–Lindley (EPL) distribution. A practical situation where the EPL distribution is most appropriate for modelling lifetime data than exponential–geometric, exponential–Poisson and exponential–logarithmic distributions is presented. We obtain the density and failure rate of the EPL distribution and properties such as mean lifetime, moments, order statistics and Rényi entropy. Furthermore, estimation by maximum likelihood and inference for large samples are discussed. The paper is motivated by two applications to real data sets and we hope that this model will be able to attract wider applicability in survival and reliability.  相似文献   

15.
B. Chandrasekar 《Statistics》2013,47(2):161-165
Assuming that the random vectors X 1 and X 2 have independent bivariate Poisson distributions, the conditional distribution of X 1 given X 1?+?X 2?=?n is obtained. The conditional distribution turns out to be a finite mixture of distributions involving univariate binomial distributions and the mixing proportions are based on a bivariate Poisson (BVP) distribution. The result is used to establish two properties of a bivariate Poisson stochastic process which are the bivariate extensions of the properties for a Poisson process given by Karlin, S. and Taylor, H. M. (1975). A First Course in Stochastic Processes, Academic Press, New York.  相似文献   

16.
The recurrence relations between the incomplete moments and the factorial incomplete moments of the modified power series distributions (MPSD) are derived. These relations are employed to obtain the experessions for the incomplete moments and the incomplete factorial moments of some particular members of the MPSD class such as the generalized negative binomial, the generalized Poisson, the generalized logrithmic series, the lost game distribution and the distribution of the number of customers served in a busy period. An application of the incomplete moments of the generalized Poisson distribution is provided in the economic selection of a manufactured product. A numerical example is provided using the Poisson distribution and the Generalized Poisson distribution. The example illustrates the difference in results using the two models  相似文献   

17.
ABSTRACT

Recently, Risti? and Nadarajah [A new lifetime distribution. J Stat Comput Simul. 2014;84:135–150] introduced the Poisson generated family of distributions and investigated the properties of a special case named the exponentiated-exponential Poisson distribution. In this paper, we study general mathematical properties of the Poisson-X family in the context of the T-X family of distributions pioneered by Alzaatreh et al. [A new method for generating families of continuous distributions. Metron. 2013;71:63–79], which include quantile, shapes of the density and hazard rate functions, asymptotics and Shannon entropy. We obtain a useful linear representation of the family density and explicit expressions for the ordinary and incomplete moments, mean deviations and generating function. One special lifetime model called the Poisson power-Cauchy is defined and some of its properties are investigated. This model can have flexible hazard rate shapes such as increasing, decreasing, bathtub and upside-down bathtub. The method of maximum likelihood is used to estimate the model parameters. We illustrate the flexibility of the new distribution by means of three applications to real life data sets.  相似文献   

18.
The analysis of word frequency count data can be very useful in authorship attribution problems. Zero-truncated generalized inverse Gaussian–Poisson mixture models are very helpful in the analysis of these kinds of data because their model-mixing density estimates can be used as estimates of the density of the word frequencies of the vocabulary. It is found that this model provides excellent fits for the word frequency counts of very long texts, where the truncated inverse Gaussian–Poisson special case fails because it does not allow for the large degree of over-dispersion in the data. The role played by the three parameters of this truncated GIG-Poisson model is also explored. Our second goal is to compare the fit of the truncated GIG-Poisson mixture model with the fit of the model that results from switching the order of the mixing and truncation stages. A heuristic interpretation of the mixing distribution estimates obtained under this alternative GIG-truncated Poisson mixture model is also provided.  相似文献   

19.
In this paper we present Bayesian analysis of finite mixtures of multivariate Poisson distributions with an unknown number of components. The multivariate Poisson distribution can be regarded as the discrete counterpart of the multivariate normal distribution, which is suitable for modelling multivariate count data. Mixtures of multivariate Poisson distributions allow for overdispersion and for negative correlations between variables. To perform Bayesian analysis of these models we adopt a reversible jump Markov chain Monte Carlo (MCMC) algorithm with birth and death moves for updating the number of components. We present results obtained from applying our modelling approach to simulated and real data. Furthermore, we apply our approach to a problem in multivariate disease mapping, namely joint modelling of diseases with correlated counts.  相似文献   

20.
When counting the number of chemical parts in air pollution studies or when comparing the occurrence of congenital malformations between a uranium mining town and a control population, we often assume Poisson distribution for the number of these rare events. Some discussions on sample size calculation under Poisson model appear elsewhere, but all these focus on the case of testing equality rather than testing equivalence. We discuss sample size and power calculation on the basis of exact distribution under Poisson models for testing non-inferiority and equivalence with respect to the mean incidence rate ratio. On the basis of large sample theory, we further develop an approximate sample size calculation formula using the normal approximation of a proposed test statistic for testing non-inferiority and an approximate power calculation formula for testing equivalence. We find that using these approximation formulae tends to produce an underestimate of the minimum required sample size calculated from using the exact test procedure. On the other hand, we find that the power corresponding to the approximate sample sizes can be actually accurate (with respect to Type I error and power) when we apply the asymptotic test procedure based on the normal distribution. We tabulate in a variety of situations the minimum mean incidence needed in the standard (or the control) population, that can easily be employed to calculate the minimum required sample size from each comparison group for testing non-inferiority and equivalence between two Poisson populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号