首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We consider the classic problem of interval estimation of a proportion p based on binomial sampling. The ‘exact’ Clopper–Pearson confidence interval for p is known to be unnecessarily conservative. We propose coverage adjustments of the Clopper–Pearson interval that incorporate prior or posterior beliefs into the interval. Using heatmap‐type plots for comparing confidence intervals, we show that the coverage‐adjusted intervals have satisfying coverage and shorter expected lengths than competing intervals found in the literature.  相似文献   

2.
Inference concerning the negative binomial dispersion parameter, denoted by c, is important in many biological and biomedical investigations. Properties of the maximum-likelihood estimator of c and its bias-corrected version have been studied extensively, mainly, in terms of bias and efficiency [W.W. Piegorsch, Maximum likelihood estimation for the negative binomial dispersion parameter, Biometrics 46 (1990), pp. 863–867; S.J. Clark and J.N. Perry, Estimation of the negative binomial parameter κ by maximum quasi-likelihood, Biometrics 45 (1989), pp. 309–316; K.K. Saha and S.R. Paul, Bias corrected maximum likelihood estimator of the negative binomial dispersion parameter, Biometrics 61 (2005), pp. 179–185]. However, not much work has been done on the construction of confidence intervals (C.I.s) for c. The purpose of this paper is to study the behaviour of some C.I. procedures for c. We study, by simulations, three Wald type C.I. procedures based on the asymptotic distribution of the method of moments estimate (mme), the maximum-likelihood estimate (mle) and the bias-corrected mle (bcmle) [K.K. Saha and S.R. Paul, Bias corrected maximum likelihood estimator of the negative binomial dispersion parameter, Biometrics 61 (2005), pp. 179–185] of c. All three methods show serious under-coverage. We further study parametric bootstrap procedures based on these estimates of c, which significantly improve the coverage probabilities. The bootstrap C.I.s based on the mle (Boot-MLE method) and the bcmle (Boot-BCM method) have coverages that are significantly better (empirical coverage close to the nominal coverage) than the corresponding bootstrap C.I. based on the mme, especially for small sample size and highly over-dispersed data. However, simulation results on lengths of the C.I.s show evidence that all three bootstrap procedures have larger average coverage lengths. Therefore, for practical data analysis, the bootstrap C.I. Boot-MLE or Boot-BCM should be used, although Boot-MLE method seems to be preferable over the Boot-BCM method in terms of both coverage and length. Furthermore, Boot-MLE needs less computation than Boot-BCM.  相似文献   

3.
Confidence intervals for parameters of distributions with discrete sample spaces will be less conservative (i.e. have smaller coverage probabilities that are closer to the nominal level) when defined by inverting a test that does not require equal probability in each tail. However, the P‐value obtained from such tests can exhibit undesirable properties, which in turn result in undesirable properties in the associated confidence intervals. We illustrate these difficulties using P‐values for binomial proportions and the difference between binomial proportions.  相似文献   

4.
We study Poisson confidence procedures that potentially lead to short confidence intervals, investigating the class of all minimal cardinality procedures. We consider how length minimization should be properly defined, and show that Casella and Robert's (1989) criterion for comparing Poisson confidence procedures leads to a contradiction. We provide an alternative criterion for comparing length performance, identify the unique length optimal minimal cardinality procedure by this criterion, and propose a modification that eliminates an important drawback it possesses. We focus on procedures whose coverage never falls below the nominal level and discuss the case in which the nominal level represents mean coverage.  相似文献   

5.
Guogen Shan 《Statistics》2018,52(5):1086-1095
In addition to point estimate for the probability of response in a two-stage design (e.g. Simon's two-stage design for binary endpoints), confidence limits should be computed and reported. The current method of inverting the p-value function to compute the confidence interval does not guarantee coverage probability in a two-stage setting. The existing exact approach to calculate one-sided limits is based on the overall number of responses to order the sample space. This approach could be conservative because many sample points have the same limits. We propose a new exact one-sided interval based on p-value for the sample space ordering. Exact intervals are computed by using binomial distributions directly, instead of a normal approximation. Both exact intervals preserve the nominal confidence level. The proposed exact interval based on the p-value generally performs better than the other exact interval with regard to expected length and simple average length of confidence intervals.  相似文献   

6.
This study constructs a simultaneous confidence region for two combinations of coefficients of linear models and their ratios based on the concept of generalized pivotal quantities. Many biological studies, such as those on genetics, assessment of drug effectiveness, and health economics, are interested in a comparison of several dose groups with a placebo group and the group ratios. The Bonferroni correction and the plug-in method based on the multivariate-t distribution have been proposed for the simultaneous region estimation. However, the two methods are asymptotic procedures, and their performance in finite sample sizes has not been thoroughly investigated. Based on the concept of generalized pivotal quantity, we propose a Bonferroni correction procedure and a generalized variable (GV) procedure to construct the simultaneous confidence regions. To address a genetic concern of the dominance ratio, we conduct a simulation study to empirically investigate the probability coverage and expected length of the methods for various combinations of sample sizes and values of the dominance ratio. The simulation results demonstrate that the simultaneous confidence region based on the GV procedure provides sufficient coverage probability and reasonable expected length. Thus, it can be recommended in practice. Numerical examples using published data sets illustrate the proposed methods.  相似文献   

7.
We develop an approach to evaluating frequentist model averaging procedures by considering them in a simple situation in which there are two‐nested linear regression models over which we average. We introduce a general class of model averaged confidence intervals, obtain exact expressions for the coverage and the scaled expected length of the intervals, and use these to compute these quantities for the model averaged profile likelihood (MPI) and model‐averaged tail area confidence intervals proposed by D. Fletcher and D. Turek. We show that the MPI confidence intervals can perform more poorly than the standard confidence interval used after model selection but ignoring the model selection process. The model‐averaged tail area confidence intervals perform better than the MPI and postmodel‐selection confidence intervals but, for the examples that we consider, offer little over simply using the standard confidence interval for θ under the full model, with the same nominal coverage.  相似文献   

8.
This paper discusses the classic but still current problem of interval estimation of a binomial proportion. Bootstrap methods are presented for constructing such confidence intervals in a routine, automatic way. Three confidence intervals for a binomial proportion are compared and studied by means of a simulation study, namely: the Wald confidence interval, the Agresti–Coull interval and the bootstrap-t interval. A new confidence interval, the Agresti–Coull interval with bootstrap critical values, is also introduced and its good behaviour related to the average coverage probability is established by means of simulations.  相似文献   

9.
The problem of estimating the difference between two binomial proportions is considered. Closed-form approximate confidence intervals (CIs) and a fiducial CI for the difference between proportions are proposed. The approximate CIs are simple to compute, and they perform better than the classical Wald CI in terms of coverage probabilities and precision. Numerical studies indicate that these approximate CIs can be used safely for practical applications under a simple condition. The fiducial CI is more accurate than the approximate CIs in terms of coverage probabilities. The fiducial CIs, the Newcombe CIs, and the Miettinen–Nurminen CIs are comparable in terms of coverage probabilities and precision. The interval estimation procedures are illustrated using two examples.  相似文献   

10.
A bootstrap based method to construct 1−α simultaneous confidence intervals for relative effects in the one-way layout is presented. This procedure takes the stochastic correlation between the test statistics into account and results in narrower simultaneous confidence intervals than the application of the Bonferroni correction. Instead of using the bootstrap distribution of a maximum statistic, the coverage of the confidence intervals for the individual comparisons are adjusted iteratively until the overall confidence level is reached. Empirical coverage and power estimates of the introduced procedure for many-to-one comparisons are presented and compared with asymptotic procedures based on the multivariate normal distribution.  相似文献   

11.
The poor performance of the Wald method for constructing confidence intervals (CIs) for a binomial proportion has been demonstrated in a vast literature. The related problem of sample size determination needs to be updated and comparative studies are essential to understanding the performance of alternative methods. In this paper, the sample size is obtained for the Clopper–Pearson, Bayesian (Uniform and Jeffreys priors), Wilson, Agresti–Coull, Anscombe, and Wald methods. Two two-step procedures are used: one based on the expected length (EL) of the CI and another one on its first-order approximation. In the first step, all possible solutions that satisfy the optimal criterion are obtained. In the second step, a single solution is proposed according to a new criterion (e.g. highest coverage probability (CP)). In practice, it is expected a sample size reduction, therefore, we explore the behavior of the methods admitting 30% and 50% of losses. For all the methods, the ELs are inflated, as expected, but the coverage probabilities remain close to the original target (with few exceptions). It is not easy to suggest a method that is optimal throughout the range (0, 1) for p. Depending on whether the goal is to achieve CP approximately or above the nominal level different recommendations are made.  相似文献   

12.
In this article, we present a procedure for approximate negative binomial tolerance intervals. We utilize an approach that has been well-studied to approximate tolerance intervals for the binomial and Poisson settings, which is based on the confidence interval for the parameter in the respective distribution. A simulation study is performed to assess the coverage probabilities and expected widths of the tolerance intervals. The simulation study also compares eight different confidence interval approaches for the negative binomial proportions. We recommend using those in practice that perform the best based on our simulation results. The method is also illustrated using two real data examples.  相似文献   

13.
One of the most basic and important problems in statistical inference is the construction of the confidence interval (CI). In this paper, we propose a novel CI for a binomial proportion by modifying the midpoint of the score interval. The proposed modified interval can solve the ‘downward spikes’ problem of the score interval without enlarging the interval length. Simulation studies are carried out to illustrate the performance of the modified interval. With regard to the criterions of coverage probability, mean absolute error and expected length, our method is competitive among the several commonly used methods for constructing a CI. A real data example is also presented to show the application of our method.  相似文献   

14.
Clinical trials often use paired binomial data as their clinical endpoint. The confidence interval is frequently used to estimate the treatment performance. Tang et al. (2009) have proposed exact and approximate unconditional methods for constructing a confidence interval in the presence of incomplete paired binary data. The approach proposed by Tang et al. can be overly conservative with large expected confidence interval width (ECIW) in some situations. We propose a profile likelihood‐based method with a Jeffreys' prior correction to construct the confidence interval. This approach generates confidence interval with a much better coverage probability and shorter ECIWs. The performances of the method along with the corrections are demonstrated through extensive simulation. Finally, three real world data sets are analyzed by all the methods. Statistical Analysis System (SAS) codes to execute the profile likelihood‐based methods are also presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Highly skewed and non-negative data can often be modeled by the delta-lognormal distribution in fisheries research. However, the coverage probabilities of extant interval estimation procedures are less satisfactory in small sample sizes and highly skewed data. We propose a heuristic method of estimating confidence intervals for the mean of the delta-lognormal distribution. This heuristic method is an estimation based on asymptotic generalized pivotal quantity to construct generalized confidence interval for the mean of the delta-lognormal distribution. Simulation results show that the proposed interval estimation procedure yields satisfactory coverage probabilities, expected interval lengths and reasonable relative biases. Finally, the proposed method is employed in red cod densities data for a demonstration.  相似文献   

16.
A method for refining an equivariant binomial confidence procedure is presented which, when applied to an existing procedure, produces a new set of equivariant intervals that are uniformly superior. The family of procedures generated from this method constitute a complete class within the class of all equivariant procedures. In certain cases it is shown that this class is also minimal complete. Also, an optimally property, monotone minimaxity, is investigated, and monotone minimax procedures are constructed.  相似文献   

17.
In a 1965 Decision Theory course at Stanford University, Charles Stein began a digression with “an amusing problem”: is there a proper confidence interval for the mean based on a single observation from a normal distribution with both mean and variance unknown? Stein introduced the interval with endpoints ± c|X| and showed indeed that for c large enough, the minimum coverage probability (over all values for the mean and variance) could be made arbitrarily near one. While the problem and coverage calculation were in the author’s hand-written notes from the course, there was no development of any optimality result for the interval. Here, the Hunt–Stein construction plus analysis based on special features of the problem provides a “minimax” rule in the sense that it minimizes the maximum expected length among all procedures with fixed coverage (or, equivalently, maximizes the minimal coverage among all procedures with a fixed expected length). The minimax rule is a mixture of two confidence procedures that are equivariant under scale and sign changes, and are uniformly better than the classroom example or the natural interval X ± c|X|?.  相似文献   

18.
ABSTRACT

For interval estimation of a binomial proportion and a Poisson mean, matching pseudocounts are derived, which give the one-sided Wald confidence intervals with second-order accuracy. The confidence intervals remove the bias of coverage probabilities given by the score confidence intervals. Partial poor behavior of the confidence intervals by the matching pseudocounts is corrected by hybrid methods using the score confidence interval depending on sample values.  相似文献   

19.
对二项分布比例参数p的似然比置信区间,提出一种简便求解方法。在平均覆盖率、平均区间长度及区间长度的95%置信区间准则下与WScore、Plus4、Jeffreys置信区间进行模拟比较。试验表明,在二项分布b(n,p)的参数n≥20且p∈(0.1,0.9)时,该方法获取的似然比置信区间性能优良。当点估计p值不是接近于0或1且n≥20时,推荐使用本方法获取p的置信区间。  相似文献   

20.
The methodology for deriving the exact confidence coefficient of some confidence intervals for a binomial proportion is proposed in Wang [2007. Exact confidence coefficients of confidence intervals for a binomial proportion. Statist. Sinica 17, 361–368]. The methodology requires two conditions of confidence intervals: the monotone boundary property and the full coverage property. In this paper, we show that for some confidence intervals of a binomial proportion, the two properties hold for any sample size. Based on results presented in this paper, the procedure in Wang [2007. Exact confidence coefficients of confidence intervals for a binomial proportion. Statist. Sinica 17, 361–368] can be directly used to calculate the exact confidence coefficients of these confidence intervals for any fixed sample size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号