首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suppose it is desired to obtain a large number Ns of items for which individual counting is impractical, but one can demand a batch to weigh at least w units so that the number of items N in the batch may be close to the desired number Ns. If the items have mean weight ωTH, it is reasonable to have w equal to ωTHNs when ωTH is known. When ωTH is unknown, one can take a sample of size n, not bigger than Ns, estimate ωTH by a good estimator ωn, and set w equal to ωnNs. Let Rn = Kp2N2s/n + Ksn be a measure of loss, where Ke and Ks are the coefficients representing the cost of the error in estimation and the cost of the sampling respectively, and p is the coefficient of variation for the weight of the items. If one determines the sample size to be the integer closest to pCNs when p is known, where C is (Ke/Ks)1/2, then Rn will be minimized. If p is unknown, a simple sequential procedure is proposed for which the average sample number is shown to be asymptotically equal to the optimal fixed sample size. When the weights are assumed to have a gamma distribution given ω and ω has a prior inverted gamma distribution, the optimal sample size can be found to be the nonnegative integer closest to pCNs + p2A(pC – 1), where A is a known constant given in the prior distribution.  相似文献   

2.
In this paper we consider the heteroscedastic regression model defined by the structural relation Y = r(V, β) + s(W)ε, where V is a p-dimensional random vector, W is a q-dimensional random vector, β is an unknown vector in some open subset B of Rm, r is a known function from Rp × B into R, s is an unknown function on Rq, and ε is an unobservable random variable that is independent of the pair (V, W). We construct asymptotically efficient estimates of the regression parameter β under mild assumptions on the functions r and s and on the distributions of ε and (V, W).  相似文献   

3.
Let X ? (r), r ≥ 1, denote generalized order statistics based on an arbitrary distribution function F with finite pth absolute moment for some 1 ≤ p ≤ ∞. We present sharp upper bounds on E(X ? (s) ? X ? (r)), 1 ≤ r < s, for F being either general or life distribution. The bounds are expressed in various scale units generated by pth central absolute or raw moments of F, respectively. The distributions achieving the bounds are specified.  相似文献   

4.
Abstract

We introduce here the truncated version of the unified skew-normal (SUN) distributions. By considering a special truncations for both univariate and multivariate cases, we derive the joint distribution of consecutive order statistics X(r, ..., r + k) = (X(r), ..., X(r + K))T from an exchangeable n-dimensional normal random vector X. Further we show that the conditional distributions of X(r + j, ..., r + k) given X(r, ..., r + j ? 1), X(r, ..., r + k) given (X(r) > t)?and X(r, ..., r + k) given (X(r + k) < t) are special types of singular SUN distributions. We use these results to determine some measures in the reliability theory such as the mean past life (MPL) function and mean residual life (MRL) function.  相似文献   

5.
An observation ×o is to be classified into one of two normal populations φ1 and φ2. A classification rule, the Two-stage sample Rule, R(TS), whose probability of misclassification, P[MC], is independent of the common but unknown variance is proposed. Some optimal properties of R(TS) are also discussed and some values of P[MC | R(TS)], the probability of misclassification given the rule R(TS), are tabulated.  相似文献   

6.
Let Z 1, Z 2, . . . be a sequence of independent Bernoulli trials with constant success and failure probabilities p = Pr(Z t  = 1) and q = Pr(Z t  = 0) = 1 − p, respectively, t = 1, 2, . . . . For any given integer k ≥ 2 we consider the patterns E1{\mathcal{E}_{1}}: two successes are separated by at most k−2 failures, E2{\mathcal{E}_{2}}: two successes are separated by exactly k −2 failures, and E3{\mathcal{E}_{3}} : two successes are separated by at least k − 2 failures. Denote by Nn,k(i){ N_{n,k}^{(i)}} (respectively Mn,k(i){M_{n,k}^{(i)}}) the number of occurrences of the pattern Ei{\mathcal{E}_{i}} , i = 1, 2, 3, in Z 1, Z 2, . . . , Z n when the non-overlapping (respectively overlapping) counting scheme for runs and patterns is employed. Also, let Tr,k(i){T_{r,k}^{(i)}} (resp. Wr,k(i)){W_{r,k}^{(i)})} be the waiting time for the rth occurrence of the pattern Ei{\mathcal{E}_{i}}, i = 1, 2, 3, in Z 1, Z 2, . . . according to the non-overlapping (resp. overlapping) counting scheme. In this article we conduct a systematic study of Nn,k(i){N_{n,k}^{(i)}}, Mn,k(i){M_{n,k}^{(i)}}, Tr,k(i){T_{r,k}^{(i)}} and Wr,k(i){W_{r,k}^{(i)}} (i = 1, 2, 3) obtaining exact formulae, explicit or recursive, for their probability generating functions, probability mass functions and moments. An application is given.  相似文献   

7.
Results of an exhaustive study of the bias of the least square estimator (LSE) of an first order autoregression coefficient α in a contaminated Gaussian model are presented. The model describes the following situation. The process is defined as Xt = α Xt-1 + Yt . Until a specified time T, Yt are iid normal N(0, 1). At the moment T we start our observations and since then the distribution of Yt, tT, is a Tukey mixture T(εσ) = (1 – ε)N(0,1) + εN(0, σ2). Bias of LSE as a function of α and ε, and σ2 is considered. A rather unexpected fact is revealed: given α and ε, the bias does not change montonically with σ (“the magnitude of the contaminant”), and similarly, given α and σ, the bias is not growing with ε (“the amount of contaminants”).  相似文献   

8.
In this paper, by considering a (3n+1) -dimensional random vector (X0, XT, YT, ZT)T having a multivariate elliptical distribution, we derive the exact joint distribution of (X0, aTX(n), bTY[n], cTZ[n])T, where a, b, c∈?n, X(n)=(X(1), …, X(n))T, X(1)<···<X(n), is the vector of order statistics arising from X, and Y[n]=(Y[1], …, Y[n])T and Z[n]=(Z[1], …, Z[n])T denote the vectors of concomitants corresponding to X(n) ((Y[r], Z[r])T, for r=1, …, n, is the vector of bivariate concomitants corresponding to X(r)). We then present an alternate approach for the derivation of the exact joint distribution of (X0, X(r), Y[r], Z[r])T, for r=1, …, n. We show that these joint distributions can be expressed as mixtures of four-variate unified skew-elliptical distributions and these mixture forms facilitate the prediction of X(r), say, based on the concomitants Y[r] and Z[r]. Finally, we illustrate the usefulness of our results by a real data.  相似文献   

9.
Let (X i , Y i ), i = 1, 2,…, n be independent and identically distributed random variables from some continuous bivariate distribution. If X (r) denotes the rth-order statistic, then the Y's associated with X (r) denoted by Y [r] is called the concomitant of the rth-order statistic. In this article, we derive an analytical expression of Shannon entropy for concomitants of order statistics in FGM family. Applying this expression for some well-known distributions of this family, we obtain the exact form of Shannon entropy, some of the information properties, and entropy bounds for concomitants of order statistics. Some comparisons are also made between the entropy of order statistics X (r) and the entropy of its concomitants Y [r]. In this family, we show that the mutual information between X (r) and Y [r], and Kullback–Leibler distance among the concomitants of order statistics are all distribution-free. Also, we compare the Pearson correlation coefficient between X (r) and Y [r] with the mutual information of (X (r), Y [r]) for the copula model of FGM family.  相似文献   

10.
Let X be a normally distributed p-dimensional column vector with mean μ and positive definite covariance matrix σ. and let X α, α = 1,…, N, be a random sample of size N from this distribution. Partition X as ( X 1, X (2)', X '(3))', where X1 is one-dimension, X(2) is p2- dimensional, and so 1 + p1 + p2 = p. Let ρ1 and ρ be the multiple correlation coefficients of X1 with X(2) and with ( X '(2), X '(3))', respectively. Write ρ2/2 = ρ2 - ρ2/1. We shall cosider the following two problems  相似文献   

11.
For non-negative integral valued interchangeable random variables v1, v2,…,vn, Takács (1967, 70) has derived the distributions of the statistics ?n' ?1n' ?(c)n and ?(-c)n concerning the partial sums Nr = v1 + v2 + ··· + vrr = 1,…,n. This paper deals with the joint distributions of some other statistics viz., (α(c)n, δ(c)n, Zn), (β(c)n, Zn) and (β(-c)n, Zn) concerning the partial sums Nr = ε1 + ··· + εrr = 1,2,…,n, of geometric random variables ε1, ε2,…,εn.  相似文献   

12.
Let GF(s) be the finite field with s elements.(Thus, when s=3, the elements of GF(s) are 0, 1 and 2.)Let A(r×n), of rank r, and ci(i=1,…,f), (r×1), be matrices over GF(s). (Thus, for n=4, r=2, f=2, we could have A=[11100121], c1=[10], c2=[02].) Let Ti (i=1,…,f) be the flat in EG(n, s) consisting of the set of all the sn?r solutions of the equations At=ci, wheret′=(t1,…,tn) is a vector of variables.(Thus, EG(4, 3) consists of the 34=81 points of the form (t1,t2,t3,t4), where t's take the values 0,1,2 (in GF(3)). The number of solutions of the equations At=ci is sn?r, where r=Rank(A), and the set of such solutions is said to form an (n?r)-flat, i.e. a flat of (n?r) dimensions. In our example, both T1 and T2 are 2-flats consisting of 34?2=9 points each. The flats T1,T2,…,Tf are said to be parallel since, clearly, no two of them can have a common point. In the example, the points of T1 are (1000), (0011), (2022), (0102), (2110), (1121), (2201), (1212) and (0220). Also, T2 consists of (0002), (2010), (1021), (2101), (1112), (0120), (1200), (0211) and (2222).) Let T be the fractional design for a sn symmetric factorial experiment obtained by taking T1,T2,…,Tf together. (Thus, in the example, 34=81 treatments of the 34 factorial experiment correspond one-one with the points of EG(4,3), and T will be the design (i.e. a subset of the 81 treatments) consisting of the 18 points of T1 and T2 enumerated above.)In this paper, we lay the foundation of the general theory of such ‘parallel’ types of designs. We define certain functions of A called the alias component matrices, and use these to partition the coefficient matrix X (n×v), occuring in the corresponding linear model, into components X.j(j=0,1,…,g), such that the information matrix X is the direct sum of the X′.jX.j. Here, v is the total number of parameters, which consist of (possibly μ), and a (general) set of (geometric) factorial effects (each carrying (s?1) degrees of freedom as usual). For j≠0, we show that the spectrum of X′.jX.j does not change if we change (in a certain important way) the usual definition of the effects. Assuming that such change has been adopted, we consider the partition of the X.j into the Xij (i=1,…,f). Furthermore, the Xij are in turn partitioned into smaller matrices (which we shall here call the) Xijh. We show that each Xijh can be factored into a product of 3 matrices J, ζ (not depending on i,j, and h) and Q(j,h,i)where both the Kronecker and ordinary product are used. We introduce a ring R using the additive groups of the rational field and GF(s), and show that the Q(j,h,i) belong to a ring isomorphic to R. When s is a prime number, we show that R is the cyclotomic field. Finally, we show that the study of the X.j and X′.jX.j can be done in a much simpler manner, in terms of certain relatively small sized matrices over R.  相似文献   

13.
Results in five areas of survey sampling dealing with the choice of the sampling design are reviewed. In Section 2, the results and discussions surrounding the purposive selection methods suggested by linear regression superpopulation models are reviewed. In Section 3, similar models to those in the previous section are considered; however, random sampling designs are considered and attention is focused on the optimal choice of πj. Then in Section 4, systematic sampling methods obtained under autocorrelated superpopulation models are reviewed. The next section examines minimax sampling designs. The work in the final section is based solely on the randomization. In Section 6 methods of sample selection which yield inclusion probabilities πj = n/N and πij = n(n - 1)/N(N - 1), but for which there are fewer than NCn possible samples, are mentioned briefly.  相似文献   

14.
We develop a Bayesian procedure for the homogeneity testing problem of r populations using r × s contingency tables. The posterior probability of the homogeneity null hypothesis is calculated using a mixed prior distribution. The methodology consists of choosing an appropriate value of π0 for the mass assigned to the null and spreading the remainder, 1 ? π0, over the alternative according to a density function. With this method, a theorem which shows when the same conclusion is reached from both frequentist and Bayesian points of view is obtained. A sufficient condition under which the p-value is less than a value α and the posterior probability is also less than 0.5 is provided.  相似文献   

15.
Let X(1,n,m1,k),X(2,n,m2,k),…,X(n,n,m,k) be n generalized order statistics from a continuous distribution F which is strictly increasing over (a,b),−a<b, the support of F. Let g be an absolutely continuous and monotonically increasing function in (a,b) with finite g(a+),g(b) and E(g(X)). Then for some positive integer s,1<sn, we give characterization of distributions by means of
  相似文献   

16.
For estimating an unknown parameter θ, we introduce and motivate the use of balanced loss functions of the form Lr, w, d0(q, d)=wr(d0, d)+ (1-w) r(q, d){L_{\rho, \omega, \delta_0}(\theta, \delta)=\omega \rho(\delta_0, \delta)+ (1-\omega) \rho(\theta, \delta)}, as well as the weighted version q(q) Lr, w, d0(q, d){q(\theta) L_{\rho, \omega, \delta_0}(\theta, \delta)}, where ρ(θ, δ) is an arbitrary loss function, δ 0 is a chosen a priori “target” estimator of q, w ? [0,1){\theta, \omega \in[0,1)}, and q(·) is a positive weight function. we develop Bayesian estimators under Lr, w, d0{L_{\rho, \omega, \delta_0}} with ω > 0 by relating such estimators to Bayesian solutions under Lr, w, d0{L_{\rho, \omega, \delta_0}} with ω = 0. Illustrations are given for various choices of ρ, such as absolute value, entropy, linex, and squared error type losses. Finally, under various robust Bayesian analysis criteria including posterior regret gamma-minimaxity, conditional gamma-minimaxity, and most stable, we establish explicit connections between optimal actions derived under balanced and unbalanced losses.  相似文献   

17.
A sequence of independent lifetimes X 1,…, X m , X m+1,…, X n were observed from inverse Weibull distribution with mean stress θ1 and reliability R 1(t 0) at time t 0 but later it was found that there was a change in the system at some point of time m and it is reflected in the sequence after X m by change in mean stress θ1 and in reliability R 2(t 0) at time t 0. The Bayes estimators of m, R 1(t 0) and R 2(t 0) are derived when a poor and a more detailed prior information is introduced into the inferential procedure. The effects of correct and wrong prior information on the Bayes estimators are studied.  相似文献   

18.
This paper considers the general linear regression model yc = X1β+ut under the heteroscedastic structure E(ut) = 0, E(u2) =σ2- (Xtβ)2, E(ut us) = 0, tæs, t, s= 1, T. It is shown that any estimated GLS estimator for β is asymptotically equivalent to the GLS estimator under some regularity conditions. A three-step GLS estimator, which calls upon the assumption E(ut2) =s?2(X,β)2 for the estimation of the disturbance covariance matrix, is considered.  相似文献   

19.
Let X1X2,.be i.i.d. random variables and let Un= (n r)-1S?(n,r) h (Xi1,., Xir,) be a U-statistic with EUn= v, v unknown. Assume that g(X1) =E[h(X1,.,Xr) - v |X1]has a strictly positive variance s?2. Further, let a be such that φ(a) - φ(-a) =α for fixed α, 0 < α < 1, where φ is the standard normal d.f., and let S2n be the Jackknife estimator of n Var Un. Consider the stopping times N(d)= min {n: S2n: + n-12a-2},d > 0, and a confidence interval for v of length 2d,of the form In,d= [Un,-d, Un + d]. We assume that Var Un is unknown, and hence, no fixed sample size method is available for finding a confidence interval for v of prescribed width 2d and prescribed coverage probability α Turning to a sequential procedure, let IN(d),d be a sequence of sequential confidence intervals for v. The asymptotic consistency of this procedure, i.e. limd → 0P(v ∈ IN(d),d)=α follows from Sproule (1969). In this paper, the rate at which |P(v ∈ IN(d),d) converges to α is investigated. We obtain that |P(v ∈ IN(d),d) - α| = 0 (d1/2-(1+k)/2(1+m)), d → 0, where K = max {0,4 - m}, under the condition that E|h(X1, Xr)|m < ∞m > 2. This improves and extends recent results of Ghosh & DasGupta (1980) and Mukhopadhyay (1981).  相似文献   

20.
The purpose of this article is to introduce a new class of extended E(s2)-optimal two level supersaturated designs obtained by adding runs to an existing E(s2)-optimal two level supersaturated design. The extended design is a union of two optimal SSDs belonging to different classes. New lower bound to E(s2) has been obtained for the extended supersaturated designs. Some examples and a small catalogue of E(s2)-optimal SSDs are also included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号