首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Linear mixed-effects model has been widely used in longitudinal data analyses. In practice, the fitting algorithm can fail to converge due to boundary issues of the estimated random-effects covariance matrix G, that is, being near-singular, non-positive definite, or both. Current available algorithms are not computationally optimal because the condition number of matrix G is unnecessarily increased when the random-effects correlation estimate is not zero. We propose an adaptive fitting (AF) algorithm using an optimal linear transformation of the random-effects design matrix. It is a data-driven adaptive procedure, aiming at reducing subsequent random-effects correlation estimates down to zero in the optimal transformed estimation space. Simulations show that AF significantly improves the convergent properties, especially under small sample size, relative large noise and high correlation settings. One real data for insulin-like growth factor protein is used to illustrate the application of this algorithm implemented with software package R (nlme).  相似文献   

2.
Many problems in the environmental and biological sciences involve the analysis of large quantities of data. Further, the data in these problems are often subject to various types of structure and, in particular, spatial dependence. Traditional model fitting often fails due to the size of the datasets since it is difficult to not only specify but also to compute with the full covariance matrix describing the spatial dependence. We propose a very general type of mixed model that has a random spatial component. Recognizing that spatial covariance matrices often exhibit a large number of zero or near-zero entries, covariance tapering is used to force near-zero entries to zero. Then, taking advantage of the sparse nature of such tapered covariance matrices, backfitting is used to estimate the fixed and random model parameters. The novelty of the paper is the combination of the two techniques, tapering and backfitting, to model and analyze spatial datasets several orders of magnitude larger than those datasets typically analyzed with conventional approaches. Results will be demonstrated with two datasets. The first consists of regional climate model output that is based on an experiment with two regional and two driver models arranged in a two-by-two layout. The second is microarray data used to build a profile of differentially expressed genes relating to cerebral vascular malformations, an important cause of hemorrhagic stroke and seizures.  相似文献   

3.
Given observations on an m × n lattice, approximate maximum likelihood estimates are derived for a family of models including direct covariance, spatial moving average, conditional autoregressive and simultaneous autoregressive models. The approach involves expressing the (approximate) covariance matrix of the observed variables in terms of a linear combination of neighbour relationship matrices, raised to a power. The structure is such that the eigenvectors of the covariance matrix are independent of the parameters of interest. This result leads to a simple Fisher scoring type algorithm for estimating the parameters. The ideas are illustrated by fitting models to some remotely sensed data.  相似文献   

4.
Complex dependency structures are often conditionally modeled, where random effects parameters are used to specify the natural heterogeneity in the population. When interest is focused on the dependency structure, inferences can be made from a complex covariance matrix using a marginal modeling approach. In this marginal modeling framework, testing covariance parameters is not a boundary problem. Bayesian tests on covariance parameter(s) of the compound symmetry structure are proposed assuming multivariate normally distributed observations. Innovative proper prior distributions are introduced for the covariance components such that the positive definiteness of the (compound symmetry) covariance matrix is ensured. Furthermore, it is shown that the proposed priors on the covariance parameters lead to a balanced Bayes factor, in case of testing an inequality constrained hypothesis. As an illustration, the proposed Bayes factor is used for testing (non-)invariant intra-class correlations across different group types (public and Catholic schools), using the 1982 High School and Beyond survey data.  相似文献   

5.
Mixed‐effects models for repeated measures (MMRM) analyses using the Kenward‐Roger method for adjusting standard errors and degrees of freedom in an “unstructured” (UN) covariance structure are increasingly becoming common in primary analyses for group comparisons in longitudinal clinical trials. We evaluate the performance of an MMRM‐UN analysis using the Kenward‐Roger method when the variance of outcome between treatment groups is unequal. In addition, we provide alternative approaches for valid inferences in the MMRM analysis framework. Two simulations are conducted in cases with (1) unequal variance but equal correlation between the treatment groups and (2) unequal variance and unequal correlation between the groups. Our results in the first simulation indicate that MMRM‐UN analysis using the Kenward‐Roger method based on a common covariance matrix for the groups yields notably poor coverage probability (CP) with confidence intervals for the treatment effect when both the variance and the sample size between the groups are disparate. In addition, even when the randomization ratio is 1:1, the CP will fall seriously below the nominal confidence level if a treatment group with a large dropout proportion has a larger variance. Mixed‐effects models for repeated measures analysis with the Mancl and DeRouen covariance estimator shows relatively better performance than the traditional MMRM‐UN analysis method. In the second simulation, the traditional MMRM‐UN analysis leads to bias of the treatment effect and yields notably poor CP. Mixed‐effects models for repeated measures analysis fitting separate UN covariance structures for each group provides an unbiased estimate of the treatment effect and an acceptable CP. We do not recommend MMRM‐UN analysis using the Kenward‐Roger method based on a common covariance matrix for treatment groups, although it is frequently seen in applications, when heteroscedasticity between the groups is apparent in incomplete longitudinal data.  相似文献   

6.
We Consider the generalized multivariate linear model and assume the covariance matrix of the p x 1 vector of responses on a given individual can be represented in the general linear structure form described by Anderson (1973). The effects of the use of estimates of the parameters of the covariance matrix on the generalized least squares estimator of the regression coefficients and on the prediction of a portion of a future vector, when only the first portion of the vector has been observed, are investigated. Approximations are derived for the covariance matrix of the generalized least squares estimator and for the mean square error matrix of the usual predictor, for the practical case where estimated parameters are used.  相似文献   

7.
Missing data in longitudinal studies can create enormous challenges in data analysis when coupled with the positive-definiteness constraint on a covariance matrix. For complete balanced data, the Cholesky decomposition of a covariance matrix makes it possible to remove the positive-definiteness constraint and use a generalized linear model setup to jointly model the mean and covariance using covariates (Pourahmadi, 2000). However, this approach may not be directly applicable when the longitudinal data are unbalanced, as coherent regression models for the dependence across all times and subjects may not exist. Within the existing generalized linear model framework, we show how to overcome this and other challenges by embedding the covariance matrix of the observed data for each subject in a larger covariance matrix and employing the familiar EM algorithm to compute the maximum likelihood estimates of the parameters and their standard errors. We illustrate and assess the methodology using real data sets and simulations.  相似文献   

8.
We investigate mixed analysis of covariance models for the 'one-step' assessment of conditional QT prolongation. Initially, we consider three different covariance structures for the data, where between-treatment covariance of repeated measures is modelled respectively through random effects, random coefficients, and through a combination of random effects and random coefficients. In all three of those models, an unstructured covariance pattern is used to model within-treatment covariance. In a fourth model, proposed earlier in the literature, between-treatment covariance is modelled through random coefficients but the residuals are assumed to be independent identically distributed (i.i.d.). Finally, we consider a mixed model with saturated covariance structure. We investigate the precision and robustness of those models by fitting them to a large group of real data sets from thorough QT studies. Our findings suggest: (i) Point estimates of treatment contrasts from all five models are similar. (ii) The random coefficients model with i.i.d. residuals is not robust; the model potentially leads to both under- and overestimation of standard errors of treatment contrasts and therefore cannot be recommended for the analysis of conditional QT prolongation. (iii) The combined random effects/random coefficients model does not always converge; in the cases where it converges, its precision is generally inferior to the other models considered. (iv) Both the random effects and the random coefficients model are robust. (v) The random effects, the random coefficients, and the saturated model have similar precision and all three models are suitable for the one-step assessment of conditional QT prolongation.  相似文献   

9.
This article investigates the choice of working covariance structures in the analysis of spatially correlated observations motivated by cardiac imaging data. Through Monte Carlo simulations, we found that the choice of covariance structure affects the efficiency of the estimator and power of the test. Choosing the popular unstructured working covariance structure results in an over-inflated Type I error possibly due to a sample size not large enough relative to the number of parameters being estimated. With regard to model fit indices, Bayesian Information Criterion outperforms Akaike Information Criterion in choosing the correct covariance structure used to generate data.  相似文献   

10.
Likelihood-based marginalized models using random effects have become popular for analyzing longitudinal categorical data. These models permit direct interpretation of marginal mean parameters and characterize the serial dependence of longitudinal outcomes using random effects [12,22]. In this paper, we propose model that expands the use of previous models to accommodate longitudinal nominal data. Random effects using a new covariance matrix with a Kronecker product composition are used to explain serial and categorical dependence. The Quasi-Newton algorithm is developed for estimation. These proposed methods are illustrated with a real data set and compared with other standard methods.  相似文献   

11.
In this paper, we derive an exact formula for the covariance of two innovations computed from a spatial Gibbs point process and suggest a fast method for estimating this covariance. We show how this methodology can be used to estimate the asymptotic covariance matrix of the maximum pseudo‐likelihood estimator of the parameters of a spatial Gibbs point process model. This allows us to construct asymptotic confidence intervals for the parameters. We illustrate the efficiency of our procedure in a simulation study for several classical parametric models. The procedure is implemented in the statistical software R , and it is included in spatstat , which is an R package for analyzing spatial point patterns.  相似文献   

12.
Longitudinal investigations play an increasingly prominent role in biomedical research. Much of the literature on specifying and fitting linear models for serial measurements uses methods based on the standard multivariate linear model. This article proposes a more flexible approach that permits specification of the expected response as an arbitrary linear function of fixed and time-varying covariates so that mean-value functions can be derived from subject matter considerations rather than methodological constraints. Three families of models for the covariance function are discussed: multivariate, autoregressive, and random effects. Illustrations demonstrate the flexibility and utility of the proposed approach to longitudinal analysis.  相似文献   

13.
We describe estimation, learning, and prediction in a treatment-response model with two outcomes. The introduction of potential outcomes in this model introduces four cross-regime correlation parameters that are not contained in the likelihood for the observed data and thus are not identified. Despite this inescapable identification problem, we build upon the results of Koop and Poirier (1997) to describe how learning takes place about the four nonidentified correlations through the imposed positive definiteness of the covariance matrix. We then derive bivariate distributions associated with commonly estimated “treatment parameters” (including the Average Treatment Effect and effect of Treatment on the Treated), and use the learning that takes place about the nonidentified correlations to calculate these densities. We illustrate our points in several generated data experiments and apply our methods to estimate the joint impact of child labor on achievement scores in language and mathematics.  相似文献   

14.
The problem of error estimation of parameters b in a linear model,Y = Xb+ e, is considered when the elements of the design matrix X are functions of an unknown ‘design’ parameter vector c. An estimated value c is substituted in X to obtain a derived design matrix [Xtilde]. Even though the usual linear model conditions are not satisfied with [Xtilde], there are situations in physical applications where the least squares solution to the parameters is used without concern for the magnitude of the resulting error. Such a solution can suffer from serious errors.

This paper examines bias and covariance errors of such estimators. Using a first-order Taylor series expansion, we derive approximations to the bias and covariance matrix of the estimated parameters. The bias approximation is a sum of two terms:One is due to the dependence between ? and Y; the other is due to the estimation errors of ? and is proportional to b, the parameter being estimated. The covariance matrix approximation, on the other hand, is composed of three omponents:One component is due to the dependence between ? and Y; the second is the covariance matrix ∑b corresponding to the minimum variance unbiased b, as if the design parameters were known without error; and the third is an additional component due to the errors in the design parameters. It is shown that the third error component is directly proportional to bb'. Thus, estimation of large parameters with wrong design matrix [Xtilde] will have larger errors of estimation. The results are illustrated with a simple linear example.  相似文献   

15.
The model chi-square that is used in linear structural equation modeling compares the fitted covariance matrix of a target model to an unstructured covariance matrix to assess global fit. For models with nonlinear terms, i.e., interaction or quadratic terms, this comparison is very problematic because these models are not nested within the saturated model that is represented by the unstructured covariance matrix. We propose a novel measure that quantifies the heteroscedasticity of residuals in structural equation models. It is based on a comparison of the likelihood for the residuals under the assumption of heteroscedasticity with the likelihood under the assumption of homoscedasticity. The measure is designed to respond to omitted nonlinear terms in the structural part of the model that result in heteroscedastic residual scores. In a small Monte Carlo study, we demonstrate that the measure appears to detect omitted nonlinear terms reliably when falsely a linear model is analyzed and the omitted nonlinear terms account for substantial nonlinear effects. The results also indicate that the measure did not respond when the correct model or an overparameterized model were used.  相似文献   

16.
The maximum likelihood equations for a multivariate normal model with structured mean and structured covariance matrix may not have an explicit solution. In some cases the model's error term may be decomposed as the sum of two independent error terms, each having a patterned covariance matrix, such that if one of the unobservable error terms is artificially treated as "missing data", the EM algorithm can be used to compute the maximum likelihood estimates for the original problem. Some decompositions produce likelihood equations which do not have an explicit solution at each iteration of the EM algorithm, but within-iteration explicit solutions are shown for two general classes of models including covariance component models used for analysis of longitudinal data.  相似文献   

17.
This paper deals with the problem of quadratic unbiased estimation for models with linear Toeplitz covariance structure. These serial covariance models are very useful to modelize time or spatial correlations by means of linear models. Optimality and local optimality is examined in different ways. For the nested Toeplitz models, it is shown that there does not exist a Uniformly Minimum Variance Quadratic Unbiased Estimator for at least one linear combination of covariance parameters. Moreover, empirical unbiased estimators are identified as Locally Minimum Variance Quadratic Unbiased Estimators for a particular choice on covariance parameters corresponding to the case where the covariance matrix of the observed random vector is proportional to the identity matrix. The complete Toeplitz-circulant model is also studied. For this model, the existence of a Uniformly Minimum Variance Quadratic Unbiased Estimator for each covariance parameter is proved.  相似文献   

18.
Application of ordinary least-squares regression to data sets which contain multiple measurements from individual sampling units produces an unbiased estimator of the parameters but a biased estimator of the covariance matrix of the parameter estimates. The present work considers a random coefficient, linear model to deal with such data sets: this model permits many senses in which multiple measurements are taken from a sampling unit, not just when it is measured at several times. Three procedures to estimate the covariance matrix of the error term of the model are considered. Given these, three procedures to estimate the parameters of the model and their covariance matrix are considered; these are ordinary least-squares, generalized least-squares, and an adjusted ordinary least-squares procedure which produces an unbiased estimator of the covariance matrix of the parameters with small samples. These various procedures are compared in simulation studies using three examples from the biological literature. The possibility of testing hypotheses about the vector of parameters is also considered. It is found that all three procedures for regression estimation produce estimators of the parameters with bias of no practical consequence, Both generalized least-squares and adjusted ordinary least-squares generally produce estimators of the covariance matrix of the parameter estimates with bias of no practical consequence, while ordinary least-squares produces a negatively biased estimator. Neither ordinary nor generalized least-squares provide satisfactory hypothesis tests of the vector of parameter estimates. It is concluded that adjusted ordinary least-squares, when applied with either of two of the procedures used to estimate the error coveriance matrix, shows promise for practical application with data sets of the nature considered here.  相似文献   

19.
This paper uses random scales similar to random effects used in the generalized linear mixed models to describe “inter-location” population variation in variance components for modeling complicated data obtained from applications such as antenna manufacturing. Our distribution studies lead to a complicated integrated extended quasi-likelihood (IEQL) for parameter estimations and large sample inference derivations. Laplace's expansion and several approximation methods are employed to simplify the IEQL estimation procedures. Asymptotic properties of the approximate IEQL estimates are derived for general structures of the covariance matrix of random scales. Focusing on a few special covariance structures in simpler forms, the authors further simplify IEQL estimates such that typically used software tools such as weighted regression can compute the estimates easily. Moreover, these special cases allow us to derive interesting asymptotic results in much more compact expressions. Finally, numerical simulation results show that IEQL estimates perform very well in several special cases studied.  相似文献   

20.
We propose a general family of nonparametric mixed effects models. Smoothing splines are used to model the fixed effects and are estimated by maximizing the penalized likelihood function. The random effects are generic and are modelled parametrically by assuming that the covariance function depends on a parsimonious set of parameters. These parameters and the smoothing parameter are estimated simultaneously by the generalized maximum likelihood method. We derive a connection between a nonparametric mixed effects model and a linear mixed effects model. This connection suggests a way of fitting a nonparametric mixed effects model by using existing programs. The classical two-way mixed models and growth curve models are used as examples to demonstrate how to use smoothing spline analysis-of-variance decompositions to build nonparametric mixed effects models. Similarly to the classical analysis of variance, components of these nonparametric mixed effects models can be interpreted as main effects and interactions. The penalized likelihood estimates of the fixed effects in a two-way mixed model are extensions of James–Stein shrinkage estimates to correlated observations. In an example three nested nonparametric mixed effects models are fitted to a longitudinal data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号