首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the estimation of parameters for a three-parameter Weibull distribution based on progressively Type-II right censored sample is studied. Different estimation procedures for complete sample are generalized to the case with progressively censored data. These methods include the maximum likelihood estimators (MLEs), corrected MLEs, weighted MLEs, maximum product spacing estimators and least squares estimators. We also proposed the use of a censored estimation method with one-step bias-correction to obtain reliable initial estimates for iterative procedures. These methods are compared via a Monte Carlo simulation study in terms of their biases, root mean squared errors and their rates of obtaining reliable estimates. Recommendations are made from the simulation results and a numerical example is presented to illustrate all of the methods of inference developed here.  相似文献   

2.
Lifetimes of modern mechanic or electronic units usually exhibit bathtub-shaped failure rates. An appropriate probability distribution to model such data is the modified Weibull distribution proposed by Lai et al. [15]. This distribution has both the two-parameter Weibull and type-1 extreme value distribution as special cases. It is able to model lifetime data with monotonic and bathtub-shaped failure rates, and thus attracts some interest among researchers because of this property. In this paper, the procedure of obtaining the maximum likelihood estimates (MLEs) of the parameters for progressively type-2 censored and complete samples are studied. Existence and uniqueness of the MLEs are proved.  相似文献   

3.
Abstract

This article studies E-Bayesian estimation and its E-posterior risk, for failure rate derived from exponential distribution, in the case of the two hyper parameters. In order to measure the estimated risk, the definition of E-posterior risk (expected posterior risk) is proposed based on the definition of E-Bayesian estimation. Moreover, under the different prior distributions of hyper parameters, the formulas of E-Bayesian estimation and formulas of E-posterior risk are given respectively, these estimations are derived based on a conjugate prior distribution for the unknown parameter under the squared error loss function. Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation and a real data set have been analyzed for illustrative purposes, results are compared on the basis of E-posterior risk.  相似文献   

4.
On the basis of Awad sup-entropy, the efficiency function for type-I censored sample from the Weibull distribution is numerically introduced. The properties of the derived efficiency are discussed. Furthermore, for a given efficiency, the termination time of the experiment, and the maximum likelihood estimates for the Weibull parameters, are proposed. Simulation results are tabulated and discussed. Censored and complete samples are compared for a wide range of the efficiency. The comparisons show the quality of the developed algorithms and the effectiveness of using censoring in estimating with the Weibull distribution.  相似文献   

5.
Weibull distributions have received wide ranging applications in many areas including reliability, hydrology and communication systems. Many estimation methods have been proposed for Weibull distributions. But there has not been a comprehensive comparison of these estimation methods. Most studies have focused on comparing the maximum likelihood estimation (MLE) with one of the other approaches. In this paper, we first propose an L-moment estimator for the Weibull distribution. Then, a comprehensive comparison is made of the following methods: the method of maximum likelihood estimation (MLE), the method of logarithmic moments, the percentile method, the method of moments and the method of L-moments.  相似文献   

6.
In this paper some shrunken and pretest shrunken estimators are suggested for the scale parameter of an exponential distribution, when observations become available from life test experiments. These estimators are shown to be more efficient than the usual estimator when a guessed value is nearer to the true value.  相似文献   

7.
In this article, we investigate the potential usefulness of the three-parameter transmuted Weibull distribution for modeling survival data. The main advantage of this distribution is that it has increasing, decreasing or constant instantaneous failure rate depending on the shape parameter and the new transmuting parameter. We obtain several mathematical properties of the transmuted Weibull distribution such as the expressions for the quantile function, moments, geometric mean, harmonic mean, Shannon, Rényi and q-entropies, mean deviations, Bonferroni and Lorenz curves, and the moments of order statistics. We propose a location-scale regression model based on the log-transmuted Weibull distribution for modeling lifetime data. Applications to two real datasets are given to illustrate the flexibility and potentiality of the transmuted Weibull family of lifetime distributions.  相似文献   

8.
We present a methodology for computing the point and interval maximum likelihood parameter estimation for the two-parameter generalized Pareto distribution (GPD) with censored data. The basic idea underlying our method is a reduction of the two-dimensional numerical search for the zeros of the GPD log-likelihood gradient vector to a one-dimensional numerical search. We describe a computationally efficient algorithm which implement this approach. Two illustrative examples are presented. Simulation results indicate that the estimates derived by maximum likelihood estimation are more reliable against those of method of moments. An evaluation of the practical sample size requirements for the asymptotic normality is also included.  相似文献   

9.
In this paper, a competing risks model is considered under adaptive type-I progressive hybrid censoring scheme (AT-I PHCS). The lifetimes of the latent failure times have Weibull distributions with the same shape parameter. We investigate the maximum likelihood estimation of the parameters. Bayes estimates of the parameters are obtained based on squared error and LINEX loss functions under the assumption of independent gamma priors. We propose to apply Markov Chain Monte Carlo (MCMC) techniques to carry out a Bayesian estimation procedure and in turn calculate the credible intervals. To evaluate the performance of the estimators, a simulation study is carried out.  相似文献   

10.
In this paper we address the problem of estimating a vector of regression parameters in the Weibull censored regression model. Our main objective is to provide natural adaptive estimators that significantly improve upon the classical procedures in the situation where some of the predictors may or may not be associated with the response. In the context of two competing Weibull censored regression models (full model and candidate submodel), we consider an adaptive shrinkage estimation strategy that shrinks the full model maximum likelihood estimate in the direction of the submodel maximum likelihood estimate. We develop the properties of these estimators using the notion of asymptotic distributional risk. The shrinkage estimators are shown to have higher efficiency than the classical estimators for a wide class of models. Further, we consider a LASSO type estimation strategy and compare the relative performance with the shrinkage estimators. Monte Carlo simulations reveal that when the true model is close to the candidate submodel, the shrinkage strategy performs better than the LASSO strategy when, and only when, there are many inactive predictors in the model. Shrinkage and LASSO strategies are applied to a real data set from Veteran's administration (VA) lung cancer study to illustrate the usefulness of the procedures in practice.  相似文献   

11.
In this paper, a new lifetime distribution is defined and studied. We refer to the new distribution as alpha power Weibull distribution. The importance of the new distribution comes from its ability to model monotone and non monotone failure rate functions, which are quite common in reliability studies. Various properties of the proposed distribution are obtained including moments, quantiles, entropy, order statistics, mean residual life function, and stress-strength parameter. The maximum likelihood estimation method is used to estimate the parameters. Two real data sets are used to illustrate the importance of the proposed distribution.  相似文献   

12.
This paper discusses maximum likelihood parameter estimation in the Pareto distribution for multicensored samples. In particu-

lar, the modality of the associated conditional log-likelihood function is investigated in order to resolve questions concerninc

the existence and uniqurneas of the lnarimum likelihood estimates.For the cases with one parameter known, the maximum likelihood

estimates of the remaining unknown parameters are shown to exist and to be unique. When both parameters are unknown, the maximum likelihood estimates may or may not exist and be unique. That is, their existence and uniqueness would seem to depend solely upon the information inherent in the sample data. In viav of the possible nonexistence and/or non-uniqueness of the maximum likelihood estimates when both parameters are unknown, alternatives to standard iterative numerical methods are explored.  相似文献   

13.
In this paper, we propose a new method of estimation for the parameters and quantiles of the three-parameter Weibull distribution based on Type-II right censored data. The method, based on a data transformation, overcomes the problem of unbounded likelihood. In the proposed method, under mild conditions, the estimates always exist uniquely, and the estimators are also consistent over the entire parameter space. Through Monte Carlo simulations, we further show that the proposed method of estimation performs well compared to some prominent methods in terms of bias and root mean squared error in small-sample situations. Finally, two real data sets are used to illustrate the proposed method of estimation.  相似文献   

14.
We introduce the log-odd Weibull regression model based on the odd Weibull distribution (Cooray, 2006). We derive some mathematical properties of the log-transformed distribution. The new regression model represents a parametric family of models that includes as sub-models some widely known regression models that can be applied to censored survival data. We employ a frequentist analysis and a parametric bootstrap for the parameters of the proposed model. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and present some ways to assess global influence. Further, for different parameter settings, sample sizes and censoring percentages, some simulations are performed. In addition, the empirical distribution of some modified residuals are given and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be extended to a modified deviance residual in the proposed regression model applied to censored data. We define martingale and deviance residuals to check the model assumptions. The extended regression model is very useful for the analysis of real data.  相似文献   

15.
In this paper, we study some mathematical properties of the beta Weibull (BW) distribution, which is a quite flexible model in analysing positive data. It contains the Weibull, exponentiated exponential, exponentiated Weibull and beta exponential distributions as special sub-models. We demonstrate that the BW density can be expressed as a mixture of Weibull densities. We provide their moments and two closed-form expressions for their moment-generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, reliability and two entropies. The density of the BW-order statistics is a mixture of Weibull densities and two closed-form expressions are derived for their moments. The estimation of the parameters is approached by two methods: moments and maximum likelihood. We compare the performances of the estimates obtained from both the methods by simulation. The expected information matrix is derived. For the first time, we introduce a log-BW regression model to analyse censored data. The usefulness of the BW distribution is illustrated in the analysis of three real data sets.  相似文献   

16.
The author proposes a reduced version, with three parameters, of the new modified Weibull (NMW) distribution in order to avoid some estimation problems. The mathematical properties and maximum-likelihood estimation of the reduced version are studied. Four real data sets (complete and censored) are used to compare the flexibility of the reduced version versus the NMW distribution. It is shown that the reduced version has the same desirable properties of the NMW distribution in spite of having two less parameters. The NMW distribution did not provide a significantly better fit than the reduced version.  相似文献   

17.
We study in detail the so-called beta-modified Weibull distribution, motivated by the wide use of the Weibull distribution in practice, and also for the fact that the generalization provides a continuous crossover towards cases with different shapes. The new distribution is important since it contains as special sub-models some widely-known distributions, such as the generalized modified Weibull, beta Weibull, exponentiated Weibull, beta exponential, modified Weibull and Weibull distributions, among several others. It also provides more flexibility to analyse complex real data. Various mathematical properties of this distribution are derived, including its moments and moment generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are also derived for the chf, mean deviations, Bonferroni and Lorenz curves, reliability and entropies. The estimation of parameters is approached by two methods: moments and maximum likelihood. We compare by simulation the performances of the estimates from these methods. We obtain the expected information matrix. Two applications are presented to illustrate the proposed distribution.  相似文献   

18.
Ihe Bimbaum-Saunders distribution was derived to model fatigue life. Frequently, it becomes necessary to stop a life testing process before all the test items have failed. Therefore, estimation procedures need to be developed for use when censoring occurs. In this article, we have derived estimators for the parameters of this distribution which may be used for complete samples or Type II symmetrically censored samples A simulation study was also conducted to examine the performance of these estimators.  相似文献   

19.
The aim of this paper is to present new likelihood based goodness-of-fit tests for the two-parameter Weibull distribution. These tests consist in nesting the Weibull distribution in three-parameter generalized Weibull families and testing the value of the third parameter by using the Wald, score, and likelihood ratio procedures. We simplify the usual likelihood based tests by getting rid of the nuisance parameters, using three estimation methods. The proposed tests are not asymptotic. A comprehensive comparison study is presented. Among a large range of possible GOF tests, the best ones are identified. The results depend strongly on the shape of the underlying hazard rate.  相似文献   

20.
In this paper, the maximum likelihood (ML) and Bayes, by using Markov chain Monte Carlo (MCMC), methods are considered to estimate the parameters of three-parameter modified Weibull distribution (MWD(β, τ, λ)) based on a right censored sample of generalized order statistics (gos). Simulation experiments are conducted to demonstrate the efficiency of the proposed methods. Some comparisons are carried out between the ML and Bayes methods by computing the mean squared errors (MSEs), Akaike's information criteria (AIC) and Bayesian information criteria (BIC) of the estimates to illustrate the paper. Three real data sets from Weibull(α, β) distribution are introduced and analyzed using the MWD(β, τ, λ) and also using the Weibull(α, β) distribution. A comparison is carried out between the mentioned models based on the corresponding Kolmogorov–Smirnov (KS) test statistic, {AIC and BIC} to emphasize that the MWD(β, τ, λ) fits the data better than the other distribution. All parameters are estimated based on type-II censored sample, censored upper record values and progressively type-II censored sample which are generated from the real data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号