首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we propose a value-at-risk (VaR) estimation technique based on a new stochastic volatility model with leverage effect, nonconstant conditional mean and jump. In order to estimate the model parameters and latent state variables, we integrate the particle filter and adaptive Markov Chain Monte Carlo (MCMC) algorithms to develop a novel adaptive particle MCMC (A-PMCMC) algorithm. Comprehensive simulation experiments based on three stock indices and two foreign exchange time series show effectiveness of the proposed A-PMCMC algorithm and the VaR estimation technique.  相似文献   

2.
In this article we discuss the estimation of stochastic volatility (SV) using generalized empirical likelihood/minimum contrast methods based on moment conditionsmodels. We show via Monte Carlo simulations that the proposed methods have superior or equivalent performance to the other alternative methods, and, additionally, they offer robustness properties in the presence of heavy-tailed distributions and outliers.  相似文献   

3.
This paper proposes a copula directional dependence by using a bivariate Gaussian copula beta regression with Stochastic Volatility (SV) models for marginal distributions. With the asymmetric copula generated by the composition of two Plackett copulas, we show that our SV copula directional dependence by the Gaussian copula beta regression model is superior to the Kim and Hwang (2016) copula directional dependence by an asymmetric GARCH model in terms of the percent relative efficiency of bias and mean squared error. To validate our proposed method with the real data, we use Brent Crude Daily Price (BRENT), West Texas Intermediate Daily Price (WTI), the Standard & Poor’s 500 (SP) and US 10-Year Treasury Constant Maturity Rate (TCM) so that our copula SV directional dependence is overall superior to the Kim and Hwang (2016) copula directional dependence by an asymmetric GARCH model in terms of precision by the percent relative efficiency of mean squared error. In terms of forecasting using the real financial data, we also show that the Bayesian SV model of the uniform transformed data by a copula conditional distribution yields an improvement on the volatility models such as GARCH and SV.  相似文献   

4.
5.
This paper extends stochastic conditional duration (SCD) models for financial transaction data to allow for correlation between error processes and innovations of observed duration process and latent log duration process. Suitable algorithms of Markov Chain Monte Carlo (MCMC) are developed to fit the resulting SCD models under various distributional assumptions about the innovation of the measurement equation. Unlike the estimation methods commonly used to estimate the SCD models in the literature, we work with the original specification of the model, without subjecting the observation equation to a logarithmic transformation. Results of simulation studies suggest that our proposed models and corresponding estimation methodology perform quite well. We also apply an auxiliary particle filter technique to construct one-step-ahead in-sample and out-of-sample duration forecasts of the fitted models. Applications to the IBM transaction data allow comparison of our models and methods to those existing in the literature.  相似文献   

6.
Summary. The availability of intraday data on the prices of speculative assets means that we can use quadratic variation-like measures of activity in financial markets, called realized volatility, to study the stochastic properties of returns. Here, under the assumption of a rather general stochastic volatility model, we derive the moments and the asymptotic distribution of the realized volatility error—the difference between realized volatility and the discretized integrated volatility (which we call actual volatility). These properties can be used to allow us to estimate the parameters of stochastic volatility models without recourse to the use of simulation-intensive methods.  相似文献   

7.
The GARCH and stochastic volatility (SV) models are two competing, well-known and often used models to explain the volatility of financial series. In this paper, we consider a closed form estimator for a stochastic volatility model and derive its asymptotic properties. We confirm our theoretical results by a simulation study. In addition, we propose a set of simple, strongly consistent decision rules to compare the ability of the GARCH and the SV model to fit the characteristic features observed in high frequency financial data such as high kurtosis and slowly decaying autocorrelation function of the squared observations. These rules are based on a number of moment conditions that is allowed to increase with sample size. We show that our selection procedure leads to choosing the model that fits best, or the simplest model under equivalence, with probability one as the sample size increases. The finite sample size behavior of our procedure is analyzed via simulations. Finally, we provide an application to stocks in the Dow Jones industrial average index.  相似文献   

8.
This paper presents an analytic result for the price of a European call option on a foreign exchange currency rate. Market volatility is assumed correlated with the exchange rate and interest rates, domestic and foreign, are assumed to be stochastic. Integrals involving interest rates are derived, characteristic functions are produced, and, with evaluation, the nature of the integrals involved in Fourier inversion is examined. By comparison with FX market data, some of the effects of the nature of stochastic interest rates upon option prices are examined.  相似文献   

9.
A stochastic volatility in mean model with correlated errors using the symmetrical class of scale mixtures of normal distributions is introduced in this article. The scale mixture of normal distributions is an attractive class of symmetric distributions that includes the normal, Student-t, slash and contaminated normal distributions as special cases, providing a robust alternative to estimation in stochastic volatility in mean models in the absence of normality. Using a Bayesian paradigm, an efficient method based on Markov chain Monte Carlo (MCMC) is developed for parameter estimation. The methods developed are applied to analyze daily stock return data from the São Paulo Stock, Mercantile & Futures Exchange index (IBOVESPA). The Bayesian predictive information criteria (BPIC) and the logarithm of the marginal likelihood are used as model selection criteria. The results reveal that the stochastic volatility in mean model with correlated errors and slash distribution provides a significant improvement in model fit for the IBOVESPA data over the usual normal model.  相似文献   

10.
We characterize joint tails and tail dependence for a class of stochastic volatility processes. We derive the exact joint tail shape of multivariate stochastic volatility with innovations that have a regularly varying distribution tail. This is used to give four new characterizations of tail dependence. In three cases tail dependence is a non-trivial function of linear volatility memory parametrically represented by tail scales, while tail power indices do not provide any relevant dependence information. Although tail dependence is associated with linear volatility memory, tail dependence itself is nonlinear. In the fourth case a linear function of tail events and exceedances is linearly independent. Tail dependence falls in a class that implies the celebrated Hill (1975) tail index estimator is asymptotically normal, while linear independence of nonlinear tail arrays ensures the asymptotic variance is the same as the iid case. We illustrate the latter finding by simulation.  相似文献   

11.
A new sampling-based Bayesian approach to the long memory stochastic volatility (LMSV) process is presented; the method is motivated by the GPH-estimator in fractionally integrated autoregressive moving average (ARFIMA) processes, which was originally proposed by J. Geweke and S. Porter-Hudak [The estimation and application of long memory time series models, Journal of Time Series Analysis, 4 (1983) 221–238]. In this work, we perform an estimation of the memory parameter in the Bayesian framework; an estimator is obtained by maximizing the posterior density of the memory parameter. Finally, we compare the GPH-estimator and the Bayes-estimator by means of a simulation study and our new approach is illustrated using several stock market indices; the new estimator is proved to be relatively stable for the various choices of frequencies used in the regression.  相似文献   

12.
In the area of finance, the stochastic volatility (SV) model is a useful tool for modelling stock market returns. However, there is evidence that asymmetric behaviour of stock returns exists. A threshold SV (THSV) model is provided to capture this behaviour. In this study, we introduce a robust model created through empirical Bayesian analysis to deal with the uncertainty between the SV and THSV models. A Markov chain Monte Carlo algorithm is applied to empirically select the hyperparameters of the prior distribution. Furthermore, the value at risk from the resulting predictive distribution is also given. Simulation studies show that the proposed empirical Bayes model not only clarifies the acceptability of prediction but also reduces the risk of model uncertainty.  相似文献   

13.
We propose an easy technique to test for time-variation in coefficients and volatilities. Specifically, by using a noncentered parameterization for state space models, we develop a method to directly calculate the relevant Bayes factor using the Savage–Dickey density ratio—thus avoiding the computation of the marginal likelihood altogether. The proposed methodology is illustrated via two empirical applications. In the first application, we test for time-variation in the volatility of inflation in the G7 countries. The second application investigates if there is substantial time-variation in the nonaccelerating inflation rate of unemployment (NAIRU) in the United States.  相似文献   

14.
In this paper, changepoint analysis is applied to stochastic volatility (SV) models which aim to understand the locations and movements of high frequency FX financial time series. Bayesian inference using the Markov Chain Monte Carlo method is performed using a process called variable dimension for SV parameters. Interesting results are that FX series have locations where one or more positions of the sequence correspond to systemic changes, and overall non-stationarity, in the returns process. Furthermore, we found that the changepoint locations provide an informative estimate for all FX series. Importantly in most cases, the detected changepoints can be identified with economic factors relevant to the country concerned. This helps support the fact that macroeconomics news and the movement in financial price are positively related.  相似文献   

15.
This paper develops a Bayesian procedure for estimation and forecasting of the volatility of multivariate time series. The foundation of this work is the matrix-variate dynamic linear model, for the volatility of which we adopt a multiplicative stochastic evolution, using Wishart and singular multivariate beta distributions. A diagonal matrix of discount factors is employed in order to discount the variances element by element and therefore allowing a flexible and pragmatic variance modelling approach. Diagnostic tests and sequential model monitoring are discussed in some detail. The proposed estimation theory is applied to a four-dimensional time series, comprising spot prices of aluminium, copper, lead and zinc of the London metal exchange. The empirical findings suggest that the proposed Bayesian procedure can be effectively applied to financial data, overcoming many of the disadvantages of existing volatility models.  相似文献   

16.
To capture both the volatility evolution and the periodicity feature in the autocorrelation structure exhibited by many nonlinear time series, a Periodic AutoRegressive Stochastic Volatility (PAR-SV ) model is proposed. Some probabilistic properties, namely the strict and second-order periodic stationarity, are provided. Furthermore, conditions for the existence of higher-order moments are established. The autocovariance structure of the squares and higher order powers of the PAR-SV process is studied. Its dynamic properties are shown to be consistent with financial time series empirical findings. Ways in which the model may be estimated are discussed. Finally, a simulation study of the performance of the proposed estimation methods is provided and the PAR-SV is applied to model the spot rates of the euro and US dollar both against the Algerian dinar. The empirical analysis shows that the proposed PAR-SV model can be considered as a viable alternative to the periodic generalized autoregressive conditionally heteroscedastic (PGARCH) model.  相似文献   

17.
In this paper, we compare the forecast ability of GARCH(1,1) and stochastic volatility models for interest rates. The stochastic volatility is estimated using Markov chain Monte Carlo methods. The comparison is based on daily data from 1994 to 1996 for the ten year swap rates for Deutsch Mark, Japanese Yen, and Pound Sterling. Various forecast horizons are considered. It turns out that forecasts based on stochastic volatility models are in most cases superiour to those obtained by GARCH(1,1) models.  相似文献   

18.
Summary.  We develop Markov chain Monte Carlo methodology for Bayesian inference for non-Gaussian Ornstein–Uhlenbeck stochastic volatility processes. The approach introduced involves expressing the unobserved stochastic volatility process in terms of a suitable marked Poisson process. We introduce two specific classes of Metropolis–Hastings algorithms which correspond to different ways of jointly parameterizing the marked point process and the model parameters. The performance of the methods is investigated for different types of simulated data. The approach is extended to consider the case where the volatility process is expressed as a superposition of Ornstein–Uhlenbeck processes. We apply our methodology to the US dollar–Deutschmark exchange rate.  相似文献   

19.
This paper presents an efficient Monte Carlo simulation scheme based on the variance reduction methods to evaluate arithmetic average Asian options in the context of the double Heston's stochastic volatility model with jumps. This paper consists of two essential parts. The first part presents a new flexible stochastic volatility model, namely, the double Heston model with jumps. In the second part, by combining two variance reduction procedures via Monte Carlo simulation, we propose an efficient Monte Carlo simulation scheme for pricing arithmetic average Asian options under the double Heston model with jumps. Numerical results illustrate the efficiency of our method.  相似文献   

20.
Testing for stochastic ordering is of considerable importance when increasing does of a treatment are being compared, but in applications involving multivariate responses has received much less attention. We propose a permutation test for testing against multivariate stochastic ordering. This test is distribution-free and no assumption is made about the dependence relations among variables. A comparative simulation study shows that the proposed solution exhibits a good overall performance when compared with existing tests that can be used for the same problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号