首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing urban development threatens not only breeding habitat for migratory landbirds but also critical stopover habitat. The purpose of this study was to investigate the relationship between landbird community composition and land cover in and surrounding urban park reserves in the Mississippi River Twin Cities Important Bird Area (IBA) in order to evaluate this area’s value during both spring migration and summer breeding seasons. This IBA includes a mosaic of residential, commercial, and park reserve land running along the Mississippi River between Minneapolis and Hastings, Minnesota. Using citizen-science data collected at 8 park reserve sites in the IBA between 2007 and 2010, we calculated species richness, diversity, and evenness for the migrating and breeding landbird community at each site and categorized species into three conservation statuses (species of greatest conservation need, native and exotic) and four migratory behavior classes (permanent residents, short-distance migrants, resident neotropical migrants, and en-route neotropical migrants). We used AIC to rank multiple regression models to evaluate how these groupings vary across sites in comparison to the land cover in and surrounding each site. We found that most measures of both the spring migration and breeding communities were negatively related to increased impervious cover. Exotic species and permanent residents were less affected by surrounding land use, while breeding season resident and transitory neotropical migrants were greatly affected. Patterns of landbird richness and density suggest that removing impervious cover within lower quality sites can improve habitat supporting migrating birds.  相似文献   

2.
As urbanization in the landscape increases, some urban centers are setting aside habitat for wildlife. This habitat may be particularly valuable to declining or conservation-priority species. One group in particular need of conservation actions that may benefit from habitat located in urban areas is grassland birds. Declines of grassland bird species have been particularly severe in the Midwestern U.S., where most grassland cover has been lost, fragmented, and surrounded by unsuitable habitat. Conservation efforts have focused on protecting large grasslands surrounded by minimal amounts of trees and development. Although urban development is considered hostile to grassland birds, this assumption has received little attention. In heavily fragmented landscapes where habitat is limited, urban grasslands may be of significant value to grassland birds. We examined grassland bird response to development and additional landscape and habitat variables in the greater Chicago metropolitan area. In 2012 and 2013, we surveyed bird communities in grassland patches along a gradient of urbanization and patch sizes. Density of Savannah Sparrows (Passerculus sandwichensis) increased with amount of development, while density of Sedge Wrens (Cistothorus platensis) decreased. Development did not appreciably impact Bobolinks (Dolichonyx oryzivorus), Dickcissels (Spiza americana), Eastern Meadowlarks (Sturnella magna), Grasshopper Sparrows (Ammodramus savannarum), or Henslow’s Sparrows (Ammodramus henslowii). Patch size had a positive effect on species densities. These results indicate that for many conservation-priority grassland birds, urban landcover surrounding grasslands generally has neutral rather than negative effects on habitat use. Therefore, grasslands in developed landscapes may provide valuable contributions to regional conservation efforts.  相似文献   

3.
Forest bird communities across a gradient of urban development   总被引:1,自引:1,他引:0  
This study examined native bird communities in forest patches across a gradient of urbanization. We used field data and multivariate statistical techniques to examine the effects of landscape context, roads, traffic noise, and vegetation characteristics on bird community composition in the North Carolina Piedmont (U.S.A.). Landscape-level variables, particularly those related to urbanization, were most important in structuring forest bird communities. Specifically, we found that road density and amount of urban land cover were the best predictors of species composition. We found that urban and rural bird communities were quite distinct from each other. Rural communities had more long-distance migrants and forest interior species but species richness did not differ between the communities. Our results suggest some specific guidelines to target bird species of interest both inside and outside of urban areas. For example, if increasing numbers of migratory species is of primary concern, then conservation areas should be located outside of urban boundaries or in areas with low road density. However, if maximizing species richness is the focus, location of the conservation area may not be as important if the conservation area is surrounded by at least 50 m of forest habitat in all directions.  相似文献   

4.
A growing trend towards increased urbanization emphasizes the role of suburban parks in wildlife conservation. Spatial planning aimed at maintaining biological diversity and functionality must consider how changes at landscape and more local scales will influence the biotic structure of urban areas. From May 2006 to July 2010, bird surveys were conducted in three metropolitan parks in Cleveland, Ohio, USA. Surveys were conducted with the goal of examining the effect of vegetation structure and adjacent land cover on the distribution and species richness of breeding birds within this park system. A total of 65 species were recorded throughout the study area. Avian species richness was linked to several habitat metrics, measured at both the local and landscape scale. Generally, species richness was highest at locations characterized by moderate forest cover. The proportion of canopy cover at survey sites related negatively to species richness and the density of understory vegetation showed a positive relationship with species diversity. Despite the influence of these three metrics, sensitivity analysis indicates that the density of understory vegetation is the most significant correlate to avian diversity within this suburban park system. Management actions aimed at providing habitat for the greatest diversity of breeding songbirds within the study area should allow for moderate canopy cover while retaining or improving the structural complexity of understory vegetatation.  相似文献   

5.
Natal habitat use by dragonflies was assessed on an urban to rural land-use gradient at a set of 21 wetlands, during two emergence seasons (2004, 2005). The wetlands were characterized for urbanization level by using the first factor from a principal components analysis combining chloride concentration in the wetland and percent forest in the surrounding buffer zone. Measurements of species diversity and its components (species richness and evenness) were analyzed and compared along the urbanization gradient, as were distributions of individual species. Dragonfly diversity, species richness, and evenness did not change along the urbanization gradient, so urban wetlands served as natal habitat for numerous dragonfly species. However, several individual species displayed strong relationships to the degree of urbanization, and most were more commonly found at urban sites and at sites with fish. In contrast, relatively rare species were generally found at the rural end of the gradient. These results suggest that urban wetlands can play important roles as dragonfly habitat and in dragonfly conservation efforts, but that conservation of rural wetlands is also important for some dragonfly species.  相似文献   

6.
Urban development either eliminates, or severely fragments, native vegetation, and therefore alters the distribution and abundance of species that depend on it for habitat. We assessed the impact of urban development on bird communities at 121 sites in and around Perth, Western Australia. Based on data from community surveys, at least 83 % of 65 landbirds were found to be dependent, in some way, on the presence of native vegetation. For three groups of species defined by specific patterns of habitat use (bushland birds), there were sufficient data to show that species occurrences declined as the landscape changed from variegated to fragmented to relictual, according to the percentage of vegetation cover remaining. For three other groups (urban birds) species occurrences were either unrelated to the amount of vegetation cover, or increased as vegetation cover declined. In order to maximise the chances of retaining avian diversity when planning for broad-scale changes in land-use (i.e. clearing native vegetation for housing or industrial development), land planners should aim for a mosaic of variegated urban landscapes (>60 % vegetation retention) set amongst the fragmented and relictual urban landscapes (<60 % vegetation retention) that are characteristic of most cities and their suburbs. Management actions for conserving remnant biota within fragmented urban landscapes should concentrate on maintaining the integrity and quality of remnant native vegetation, and aim at building awareness among the general public of the conservation value of remnant native vegetation.  相似文献   

7.
We collected ants from six urban and one forest land-use types in Raleigh, NC to examine the effects of urbanization on species richness and assemblage composition. Since urban areas are warmer (i.e., heat island effect) we also tested if cities were inhabited by species from warmer/drier environments. Species richness was lower in industrial areas relative to other urban and natural environments. There are two distinct ant assemblages; 1) areas with thick canopy cover, and 2) more disturbed open urban areas. Native ant assemblages in open environments have more southwestern (i.e., warmer/drier) distributions than forest assemblages. High native species richness suggests that urban environments may allow species to persist that are disappearing from natural habitat fragments. The subset of species adapted to warmer/drier environments indicates that urban areas may facilitate the movement of some species. This suggests that urban adapted ants may be particularly successful at tracking future climate change.  相似文献   

8.
Habitat alteration via urbanization has very different effects on even closely related taxa. Most research investigating the ecological effects of urbanization has focused on birds or mammals, resulting in a relatively poor understanding of how the species richness and community composition of invertebrates may change. We quantified differences in species richness of adult odonates (dragonflies and damselflies) at lentic and lotic sites in urban and rural landscapes, and we examined environmental factors that might drive the differences in community composition that we observed. For lotic sites, species richness did not differ between urban versus rural sites for either dragonflies or damselflies. For lentic sites, urban and rural sites contained similar dragonfly species richness, but damselfly species richness was significantly lower at urban sites than at rural sites. Differences in lentic odonate community composition were associated with the amount of urban development within 150 m of each site, mean algal coverage, and distance to the urban center. At lotic sites, water temperature and distance to the urban center were correlated with differences in odonate community composition. The differing responses to urbanization observed in this study were probably a consequence of differences between lentic versus lotic ecosystems and between dragonflies versus damselflies in dispersal capability and habitat specificity. Given that different environmental factors affected these taxa differently in lentic and lotic sites, maintaining the highest level of odonate diversity possible across a landscape will require the use of different management practices for each ecosystem type.  相似文献   

9.
Impacts of urbanization on biodiversity are commonly studied using urbanization gradients which provide a space-for-time substitution in estimating consequences of urban expansion. Rates of urbanization and human population growth are high in tropical countries of the developing world, which also hold most of the world’s biodiversity hot-spots, yet few studies have considered biodiversity trends along urban gradients in these regions. Bird communities across a gradient of nine sites in Uganda, from the city centre of Kampala to outlying rural locations, were studied over a six year period. These sites were ordered along an urbanization gradient using Principle Components Analysis based on habitat variables estimated at each site. Bird species richness showed a decrease from rural to urban sites, a trend especially evident in forest birds. There was no clear pattern in total abundance, total biomass or biomass per individual along the gradient. However, this latter result was heavily influenced by a colony of Marabou Storks at one site. When this species was omitted, there was evidence of a positive trend with urbanization, showing that as species richness decreased, the bird community was increasingly dominated by larger species with increasing urbanization, which were mainly scavengers able to exploit human refuse. These results provide further support for the negative impacts of urbanization on species richness, but also demonstrate trends in abundance and biomass are variable across different regions. In particular, the increasing dominance of larger species in urban areas may be relevant to certain geographic and/or socioeconomic contexts.  相似文献   

10.
Urban areas are increasing in number, extent, and human population density worldwide. There is potential to mitigate negative impacts of urbanization to native pond-breeding amphibians by providing habitat in both remnant natural and constructed wetlands. This study examines amphibian use of potential breeding sites in natural and constructed ponds in a large metropolitan area to investigate habitat characteristics that are associated with successful breeding. I surveyed 62 ponds over three breeding seasons in Portland, Oregon, measuring eleven habitat characteristics that may influence their successful breeding: pond depth, nitrate level, aquatic refugia, aquatic vegetation, surrounding vegetation, pond permanence, presence of fish and of introduced bullfrogs, surrounding road density and forest cover, and whether they were constructed or remnant natural ponds. Five of the six native pond-breeding species that occur in the region were regularly found breeding in city ponds. Surrounding forest cover and amount of aquatic vegetation were highly associated with breeding, indicating that preserving and planting vegetation likely benefits urban amphibians. Non-native bullfrogs were not associated with native species richness. Surprisingly, whether a pond was natural or constructed was also only weakly associated with native species breeding, and the trend was towards higher presence for all species in constructed ponds. This indicates that novel, human-dominated areas can provide habitat for these species. Consideration of habitat characteristics associated with breeding success in urban pond management will likely benefit native amphibians in these rapidly expanding landscapes.  相似文献   

11.
Metropolitan areas are continually expanding, resulting in increasing impacts on ecosystems. Worldwide, riverine floodplains are among the most endangered landscapes and are often the focus of restoration activities. Amphibians and reptiles have valuable ecological roles in ecosystems, and promoting their abundance and diversity when rehabilitating riparian systems can contribute to reestablishing degraded ecosystem functions. We evaluated the herpetofauna community by measuring abundance, richness, diversity, and species-habitat relations along three reaches (wildland, urban rehabilitated, and urban disturbed reaches) varying in degree of urbanization and rehabilitation along the Salt River in central Arizona. We performed visual surveys for herpetofauna and quantified riparian microhabitat along eight transects per reach. The wildland reach had the greatest herpetofauna species richness and diversity, and had similar abundance compared to the urban rehabilitated reach. The urban disturbed reach had the lowest herpetofauna abundance and species richness, and had a similar diversity compared to the urban rehabilitated reach. Principal Component Analysis reduced 21 microhabitat variables to five factors which described habitat differences among reaches. Vegetation structural complexity, vegetation species richness, densities of Prosopis (mesquite), Salix (willow), Populus (cottonwood), and animal burrow density had a positive correlation with at least one herpetofauna community parameter, and had a positive correlation with abundance of at least one lizard species. Rehabilitation activities positively influenced herpetofauna abundance and species richness; whereas, urbanization negatively influenced herpetofauna diversity. Based on herpetofauna-microhabitat associations, we recommend urban natural resource managers increase vegetation structural complexity and woody debris to improve herpetofauna habitat when rehabilitating degraded riparian systems.  相似文献   

12.
The influence of environmental parameters on epigeic beetle communities of forest fragments in an urbanization gradient was studied in Berlin. Eight deciduous forests along a rural to urban gradient were sampled with pitfall traps. Species richness did not decline across the rural to urban gradient. As expected, impervious surface cover as an indicator of urbanization correlated not only with habitat fragmentation and heat island effect but also with altered soil properties. The proportion of forest specialist staphylinid species decreased with increasing urbanization. The differences between staphylinid communities of neighboring forest fragments were enhanced in the most urban parts, probably due to increased habitat fragmentation. Furthermore, the loss of flightless species with increasing habitat isolation emphasized the influence of habitat fragmentation. The carabid communities revealed the urbanization effects not as clearly as the staphylinid communities, but both taxa revealed that direct anthropogenic habitat alteration, indicated by removal of decaying wood, favors open-habitat specialists. The extent of the urbanization influence seems to vary seasonally. Environmental parameters associated with urbanization explain the ordination of species communities in the winter better than in the summer. Heat island effect is suggested as an explanation for this difference.  相似文献   

13.
Urbanization reduces the quantity of native vegetation and alters its local structure and regional spatial pattern. These changes cause local extirpations of bird species associated with native vegetation and increases in the abundance and number of bird species associated with human activity. We used 54–1 km2 landscapes in the Seattle, Washington, USA metropolitan area to determine (1) the relative importance of habitat quantity, structure, and pattern to bird diversity and abundance and (2) whether housing developments can be managed to mitigate the negative impacts of urbanization on forest bird diversity. In general, bird species richness was high and many native forest species were retained where urban landcover comprised less than 52% of the landscape, tree density (especially that of evergreens) remained at least 9.8 trees/ha in developments, and forest was at least 64% aggregated across the landscape. These results suggest that the quantity, structure, and pattern of forested habitat affected breeding bird diversity in urbanizing landscapes. However, habitat pattern appeared less influential than other habitat attributes when results from all community- and population-level analyses were considered. Conservation of native birds in reserves can be supplemented by managing the amount, composition, structural complexity, and—to a lesser extent—arrangement of vegetation in neighborhoods.  相似文献   

14.
At present, urban areas cover almost 3% of the Earth’s terrestrial area, and this proportion is constantly increasing. Although urbanization leads to a decline in biodiversity, at the same time it creates extensive habitats that are exploited by an assemblage of organisms, including birds. The species composition and density of birds nesting in towns and cities are determined by the types of buildings, the structure and maturity of urban greenery, and habitat diversity. In contrast, the habitat traits shaping the community of birds wintering in urban areas are not known. The aim of this work was to assess the influence of habitat structure, food resources and the urban effects (pollution, noise, artificial light) on an assemblage of birds overwintering in an urban area. It was carried out in 2014 and 2015 in the city of Kraków (southern Poland), on 56 randomly chosen sample plots, in which the composition, density and interseasonal similarity of bird assemblage were assessed with line transect method. A total of 64 bird species (mean = 17.7 ± 4.9 SD species/plot) was recorded. The mean density was 89.6 ind./km ±63.3 SD. The most numerous species were Great Tit Parus major, Magpie Pica pica, Blackbird Turdus merula, Blue Tit Cyanistes caeruleus, Rook Corvus frugilegus, Fieldfare Turdus pilaris and House Sparrow Passer domesticus. Noise adversely affected species numbers and density, but artificial light acted positively on the density of birds and their interseasonal stability. The species richness and density of birds were also determined by the number of food sources available (e.g. bird-feeders). In addition, the greater the proportion of open areas, the fewer species were recorded. In contrast, the more urban greenery there was, the greater the density of the entire bird assemblage. Urban infrastructure (buildings, roads, refuse tips) had a positive effect on the interseasonal stabilization of the species composition of wintering birds. The results of this work indicate that the urban effect, i.e. noise and light pollution, apart from purely habitat factors, provide a good explanation for the species richness, density and stability of bird assemblage wintering in urban areas.  相似文献   

15.
Greenways may provide stopover habitat for migrating birds in otherwise inhospitable suburban landscapes. We examined the effect of greenway forested corridor width, vegetation composition and structure, and adjacent land cover on the species richness and abundance of migrating songbirds during spring and fall migration in Raleigh and Cary, North Carolina, USA. Generally, migrating birds were more abundant in wider forest corridors during spring and fall migration. During the spring, migrants were detected more commonly in greenways with taller trees and a higher percentage of hardwood trees. In the fall, migrant richness and abundance was highest in greenways with lower canopy cover, possibly because of the increased vertical complexity of the vegetation at these sites. Forest-interior migrant richness was not correlated with corridor width in either season, but these species were more abundant in greenways bordered by less bare earth and pavement cover in the spring. No other bird groupings were correlated with adjacent land cover measures. Although migrants used greenways of all widths, forested corridors wider than 150 m should be conserved whenever possible to provide stopover habitat for forest-interior migrants. Shrub cover should be retained to maintain vegetative complexity. Habitat for the greatest diversity of migrants can be provided by constructing greenways in areas of lower development intensity and encouraging residents to retain shrubs and trees on properties bordering greenways.  相似文献   

16.

The Neotropical region has been subjected to massive urbanization, which poses high risks for some global biodiversity hotspots and losses of ecosystem functions and services. In this study, we investigate how distance from large patches of native forests (source areas) and vegetation (green)/and infrastructure (gray) characteristics affect bird species richness and functional diversity in São Paulo megacity, southeastern Brazil. We analyzed the effects of source areas and green/gray characteristics on species richness and functional diversity (richness, evenness, and divergence) indices. We detected 231 bird species, and our data confirmed our predictions: (1) bird species richness in urbanized habitats was found to be (~?50–85%) lower than in source habitats; (2) species richness and trait composition significantly decreased as the distance from the source area increased, while functional richness was not affected by this metric; and (3) shrub and herbaceous covers and maximum height of trees were positively correlated with species richness and unique functional traits regarding habitat, diet, foraging and nesting strata and dispersal ability of birds in the forest-urban matrix. The number of buildings was negatively correlated with bird species richness and functional richness. Maximum height of buildings caused dramatic declines in functional evenness. Functional divergence was notably lower in sites with high shrub cover. Our study stresses the complexity of vegetation embedded in large Neotropical urban settlements and the need to maintain large protected areas surrounding megacities to mitigate the impacts of urbanization on birds.

  相似文献   

17.
Shih  Wan-Yu 《Urban Ecosystems》2018,21(2):379-393

Urban greenspaces harbouring many species in cities are vital planning objects for enhancing biodiversity. Seeking to optimise ecological values of urban greenspaces, this paper explores 1. Bird composition by feeding and foraging characteristics in urban greenspaces located in densely developed central districts of Taipei City; and 2. Important features of greenspaces and underlying built environments that influence bird abundance, species richness, and diversity. Results show that the majority of birds found in the study sites are omnivorous and ground foragers; whereas birds relying on water/wetland habitats for feeding and foraging are relatively small in population and species richness. This suggests water/wetland associated environments and birds might be negatively impacted by urbanisation. Secondly, bird richness and diversity increase in accordance with greenspace size, water area, and habitat heterogeneity, but little relationship is found with greenspace structure, such as greenspace shape, distance to nearest greenspaces, and proximity to source patches of mountains and rivers. Also, no significant influence is observed from development intensity, which is measured by NDBI, and building height at greenspace surroundings. According to this result, this study suggests conservation of large greenspaces as a priority strategy for enhancing urban biodiversity. The development of land should take its potential ecological value into account while assessing environmental impact. For enhancing habitat quality of existing urban greenspaces, creating water bodies and increasing habitat types can be effective methods. Yet current planning strategies to increase street greenery and to connect urban greenspaces with surrounding mountains and rivers might only benefit specific urban exploiters or adaptors and result in little overall effect on richness and diversity.

  相似文献   

18.
Urban green spaces provide habitat for numerous plant and animal species. However, currently we have little knowledge on which determinants drive the species richness within and across taxonomic groups. In this paper we investigate the determinants of total, native, and endangered species richness for vascular plants, birds, and mammals within and across taxonomic groups. We examined a stratified random sample of 32 urban green spaces in Hannover, Germany. Species inventories for plants and birds were generated on the basis of line transect surveys. Mammals were surveyed by means of point counts using camera traps. Using a principal component analysis and multiple regression models, we tested 10 explanatory variables for species-area effects, distance effects, and the effects of habitat structure of green spaces on species richness. When analyzing single explanatory variables, we determined that the species richness of all groups was significantly positively correlated to patch area, number of habitat types, and a short distance to the nearest green space. Testing combined effects of variables showed that patch area in combination with habitat heterogeneity was most important for plants (total, native, and endangered), birds (total and native), and overall species richness. This emphasizes the importance of the species-area effect and the effects of habitat structure on species richness in urban green spaces. We conclude that, in the context of urban planning, it is important to conserve large green spaces that include a high diversity of habitats to maintain high species richness.  相似文献   

19.
The environmental factors affecting the spatial dynamics of bird communities in urban parks are well understood, but much less attention has been paid to the seasonal dynamics of bird communities. Since migrant and resident human commensal birds might have contrasting responses to environmental factors of urban parks, we expected different seasonal dynamics among parks. On the other hand, because bird species can have different habitat relationships throughout the year, we also expected different responses of bird richness to environmental variables between breeding and non-breeding seasons. Bird surveys were conducted in 14 small urban parks (1–4 Ha) of Mar del Plata city (Argentina) for one full annual cycle. Bird richness changed between seasons, but bird abundance remained constant. Bird community composition did not vary between seasons, but urban parks near the urban center, with the highest pedestrian traffic and isolation to other green areas had the least seasonal change of composition. During the breeding season, bird richness was negatively affected by the percentage cover of high buildings surrounding the immediate limits of parks, whereas during the non-breeding season bird richness was not related with any environmental variable. Bird composition variation among parks was affected by the distance to the urban center during both seasons. Results showed that urbanization promotes a seasonal homogenization of bird communities in urban parks, probably by affecting the presence of migrant species and promoting the temporal stability of human commensal species.  相似文献   

20.
Urbanization causes species loss around the world, but its effects on phylogenetic diversity are poorly known in tropical forests. Using a patch-landscape approach in an urbanizing region of the Brazilian Atlantic Forest, we tested whether the increase in landscape urbanization reduces plant species density, phylogenetic richness and divergence, and increases the relatedness among co-occurring individuals and species. We assessed plant responses to urbanization in adult (diameter at breast height?>?10 cm) and sapling communities (2.5–10 cm diameter) separately, as saplings are proxies of the future flora. We sampled 2860 woody plants belonging to 155 species in nine circular landscapes with urbanization level varying from 0% to 45%, and estimated the relatedness among the species that have increased and decreased in relative abundance in more urbanized landscapes (winner and losers, respectively). As expected, species density and phylogenetic richness decreased with the increase in urbanization. These responses were consistent for adult and sapling communities, suggesting a persistent loss of species and lineages in more urbanized landscapes. Contrary to our expectations, phylogenetic divergence and structure did not respond to urbanization, indicating that the more urbanized landscapes still retain much evolutionary history. However, because the relatedness among winners was greater than among losers, it is likely that the phylogenetic divergence gradually reduces and the relatedness increases, resulting in impoverished forests with uncertain ability to provide ecosystem services such as carbon storage and pest control. This environmental cost should be taken into account to align urban sprawl with biodiversity conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号