首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper studies bandwidth selection for kernel estimation of derivatives of multidimensional conditional densities, a non-parametric realm unexplored in the literature. This paper extends Baird [Cross validation bandwidth selection for derivatives of multidimensional densities. RAND Working Paper series, WR-1060; 2014] in its examination of conditional multivariate densities, derives and presents criteria for arbitrary kernel order and density dimension, shows consistency of the estimators, and investigates a minimization criterion which jointly estimates numerator and denominator bandwidths. I conduct a Monte Carlo simulation study for various orders of kernels in the Gaussian family and compare the new cross validation criterion with those implied by Baird [Cross validation bandwidth selection for derivatives of multidimensional densities. RAND Working Paper series, WR-1060; 2014]. The paper finds that higher order kernels become increasingly important as the dimension of the distribution increases. I find that the cross validation criterion developed in this paper that jointly estimates the derivative of the joint density (numerator) and the marginal density (denominator) does orders of magnitude better than criteria that estimate the bandwidths separately. I further find that using the infinite order Dirichlet kernel tends to have the best results.  相似文献   

2.
ABSTRACT

Kernel estimation is a popular approach to estimation of the pair correlation function which is a fundamental spatial point process characteristic. Least squares cross validation was suggested by Guan [A least-squares cross-validation bandwidth selection approach in pair correlation function estimations. Statist Probab Lett. 2007;77(18):1722–1729] as a data-driven approach to select the kernel bandwidth. The method can, however, be computationally demanding for large point pattern data sets. We suggest a modified least squares cross validation approach that is asymptotically equivalent to the one proposed by Guan but is computationally much faster.  相似文献   

3.
Abstract

An exact, closed form, and easy to compute expression for the mean integrated squared error (MISE) of a kernel estimator of a normal mixture cumulative distribution function is derived for the class of arbitrary order Gaussian-based kernels. Comparisons are made with MISE of the empirical distribution function, the infeasible minimum MISE, and the uniform kernel. A simple plug-in method of simultaneously selecting the optimal bandwidth and kernel order is proposed based on a non asymptotic approximation of the unknown distribution by a normal mixture. A simulation study shows that the method provides a viable alternative to existing bandwidth selection procedures.  相似文献   

4.
Kernel Density Estimation on a Linear Network   总被引:1,自引:0,他引:1       下载免费PDF全文
This paper develops a statistically principled approach to kernel density estimation on a network of lines, such as a road network. Existing heuristic techniques are reviewed, and their weaknesses are identified. The correct analogue of the Gaussian kernel is the ‘heat kernel’, the occupation density of Brownian motion on the network. The corresponding kernel estimator satisfies the classical time‐dependent heat equation on the network. This ‘diffusion estimator’ has good statistical properties that follow from the heat equation. It is mathematically similar to an existing heuristic technique, in that both can be expressed as sums over paths in the network. However, the diffusion estimate is an infinite sum, which cannot be evaluated using existing algorithms. Instead, the diffusion estimate can be computed rapidly by numerically solving the time‐dependent heat equation on the network. This also enables bandwidth selection using cross‐validation. The diffusion estimate with automatically selected bandwidth is demonstrated on road accident data.  相似文献   

5.
Kernel smoothing of spatial point data can often be improved using an adaptive, spatially varying bandwidth instead of a fixed bandwidth. However, computation with a varying bandwidth is much more demanding, especially when edge correction and bandwidth selection are involved. This paper proposes several new computational methods for adaptive kernel estimation from spatial point pattern data. A key idea is that a variable-bandwidth kernel estimator for d-dimensional spatial data can be represented as a slice of a fixed-bandwidth kernel estimator in \((d+1)\)-dimensional scale space, enabling fast computation using Fourier transforms. Edge correction factors have a similar representation. Different values of global bandwidth correspond to different slices of the scale space, so that bandwidth selection is greatly accelerated. Potential applications include estimation of multivariate probability density and spatial or spatiotemporal point process intensity, relative risk, and regression functions. The new methods perform well in simulations and in two real applications concerning the spatial epidemiology of primary biliary cirrhosis and the alarm calls of capuchin monkeys.  相似文献   

6.
Abstract

In this article we propose an automatic selection of the bandwidth of the recursive kernel density estimators for spatial data defined by the stochastic approximation algorithm. We showed that, using the selected bandwidth and the stepsize which minimize the MWISE (Mean Weighted Integrated Squared Error), the recursive estimator will be quite similar to the nonrecursive one in terms of estimation error and much better in terms of computational costs. In addition, we obtain the central limit theorem for the nonparametric recursive density estimator under some mild conditions.  相似文献   

7.
Abstract

In this work, we propose beta prime kernel estimator for estimation of a probability density functions defined with nonnegative support. For the proposed estimator, beta prime probability density function used as a kernel. It is free of boundary bias and nonnegative with a natural varying shape. We obtained the optimal rate of convergence for the mean squared error (MSE) and the mean integrated squared error (MISE). Also, we use adaptive Bayesian bandwidth selection method with Lindley approximation for heavy tailed distributions and compare its performance with the global least squares cross-validation bandwidth selection method. Simulation studies are performed to evaluate the average integrated squared error (ISE) of the proposed kernel estimator against some asymmetric competitors using Monte Carlo simulations. Moreover, real data sets are presented to illustrate the findings.  相似文献   

8.
The problem of nonparametric estimation of the intensity of a nonhomogeneous Poisson process is considered. A kernel estimator of the intensity is introduced with data driven bandwidth. The bandwidth is obtained from an L2 cross validation procedure. Results on almost sure convergence of the estimator are obtained, provided the number of observed realizations n tends to infinity. The limiting distribution of the estimator is presented for n→∞.  相似文献   

9.
This paper considers the problem of selecting optimal bandwidths for variable (sample‐point adaptive) kernel density estimation. A data‐driven variable bandwidth selector is proposed, based on the idea of approximating the log‐bandwidth function by a cubic spline. This cubic spline is optimized with respect to a cross‐validation criterion. The proposed method can be interpreted as a selector for either integrated squared error (ISE) or mean integrated squared error (MISE) optimal bandwidths. This leads to reflection upon some of the differences between ISE and MISE as error criteria for variable kernel estimation. Results from simulation studies indicate that the proposed method outperforms a fixed kernel estimator (in terms of ISE) when the target density has a combination of sharp modes and regions of smooth undulation. Moreover, some detailed data analyses suggest that the gains in ISE may understate the improvements in visual appeal obtained using the proposed variable kernel estimator. These numerical studies also show that the proposed estimator outperforms existing variable kernel density estimators implemented using piecewise constant bandwidth functions.  相似文献   

10.
This paper demonstrates that cross-validation (CV) and Bayesian adaptive bandwidth selection can be applied in the estimation of associated kernel discrete functions. This idea is originally proposed by Brewer [A Bayesian model for local smoothing in kernel density estimation, Stat. Comput. 10 (2000), pp. 299–309] to derive variable bandwidths in adaptive kernel density estimation. Our approach considers the adaptive binomial kernel estimator and treats the variable bandwidths as parameters with beta prior distribution. The best variable bandwidth selector is estimated by the posterior mean in the Bayesian sense under squared error loss. Monte Carlo simulations are conducted to examine the performance of the proposed Bayesian adaptive approach in comparison with the performance of the Asymptotic mean integrated squared error estimator and CV technique for selecting a global (fixed) bandwidth proposed in Kokonendji and Senga Kiessé [Discrete associated kernels method and extensions, Stat. Methodol. 8 (2011), pp. 497–516]. The Bayesian adaptive bandwidth estimator performs better than the global bandwidth, in particular for small and moderate sample sizes.  相似文献   

11.
Multivariate associated kernel estimators, which depend on both target point and bandwidth matrix, are appropriate for distributions with partially or totally bounded supports and generalize the classical ones such as the Gaussian. Previous studies on multivariate associated kernels have been restricted to products of univariate associated kernels, also considered having diagonal bandwidth matrices. However, it has been shown in classical cases that, for certain forms of target density such as multimodal ones, the use of full bandwidth matrices offers the potential for significantly improved density estimation. In this paper, general associated kernel estimators with correlation structure are introduced. Asymptotic properties of these estimators are presented; in particular, the boundary bias is investigated. Generalized bivariate beta kernels are handled in more details. The associated kernel with a correlation structure is built with a variant of the mode-dispersion method and two families of bandwidth matrices are discussed using the least squared cross validation method. Simulation studies are done. In the particular situation of bivariate beta kernels, a very good performance of associated kernel estimators with correlation structure is observed compared to the diagonal case. Finally, an illustration on a real dataset of paired rates in a framework of political elections is presented.  相似文献   

12.
Integrated squared density derivatives are important to the plug-in type of bandwidth selector for kernel density estimation. Conventional estimators of these quantities are inefficient when there is a non-smooth boundary in the support of the density. We introduce estimators that utilize density derivative estimators obtained from local polynomial fitting. They retain the rates of convergence in mean-squared error that are familiar from non-boundary cases, and the constant coefficients have similar forms. The estimators and the formula for their asymptotically optimal bandwidths, which depend on integrated products of density derivatives, are applied to automatic bandwidth selection for local linear density estimation. Simulation studies show that the constructed bandwidth rule and the Sheather–Jones bandwidth are competitive in non-boundary cases, but the former overcomes boundary problems whereas the latter does not.  相似文献   

13.
A novel distribution-free k-sample test of differences in location shifts based on the analysis of kernel density functional estimation is introduced and studied. The proposed test parallels one-way analysis of variance and the Kruskal–Wallis (KW) test aiming at testing locations of unknown distributions. In contrast to the rank (score)-transformed non-parametric approach, such as the KW test, the proposed F-test uses the measurement responses along with well-known kernel density estimation (KDE) to estimate the locations and construct the test statistic. A practical optimal bandwidth selection procedure is also provided. Our simulation studies and real data example indicate that the proposed analysis of kernel density functional estimate (ANDFE) test is superior to existing competitors for fat-tailed or heavy-tailed distributions when the k groups differ mainly in location rather than shape, especially with unbalanced data. ANDFE is also highly recommended when it is unclear whether test groups differ mainly in shape or location. The Canadian Journal of Statistics 48: 167–186; 2020 © 2019 Statistical Society of Canada  相似文献   

14.
Density level sets are mainly estimated using one of three methodologies: plug-in, excess mass, or a hybrid approach. The plug-in methods are based on replacing the unknown density by some nonparametric estimator, usually the kernel one. Thus, the bandwidth selection is a fundamental problem from an applied perspective. Recently, specific selectors for level sets have been proposed. However, if some a priori information about the geometry of the level set is available, then excess mass algorithms can be useful. In this case, the problem of bandwidth selection can be avoided. The third methodology is a hybrid of the others. It assumes a mild geometric restriction on the level set and it requires a pilot nonparametric estimator of the density. One interesting open question concerns the performance of these methods. In this work, existing methods are reviewed, and two new hybrid algorithms are proposed. Their practical behaviour is compared through extensive simulation study.  相似文献   

15.
Bandwidth selection is an important problem of kernel density estimation. Traditional simple and quick bandwidth selectors usually oversmooth the density estimate. Existing sophisticated selectors usually have computational difficulties and occasionally do not exist. Besides, they may not be robust against outliers in the sample data, and some are highly variable, tending to undersmooth the density. In this paper, a highly robust simple and quick bandwidth selector is proposed, which adapts to different types of densities.  相似文献   

16.
A crucial problem in kernel density estimates of a probability density function is the selection of the bandwidth. The aim of this study is to propose a procedure for selecting both fixed and variable bandwidths. The present study also addresses the question of how different variable bandwidth kernel estimators perform in comparison with each other and to the fixed type of bandwidth estimators. The appropriate algorithms for implementation of the proposed method are given along with a numerical simulation.The numerical results serve as a guide to determine which bandwidth selection method is most appropriate for a given type of estimator over a vide class of probability density functions, Also, we obtain a numerical comparison of the different types of kernel estimators under various types of bandwidths.  相似文献   

17.
As conventional cross-validation bandwidth selection methods do not work properly in the situation where the data are serially dependent time series, alternative bandwidth selection methods are necessary. In recent years, Bayesian-based methods for global bandwidth selection have been studied. Our experience shows that a global bandwidth is however less suitable than a localized bandwidth in kernel density estimation based on serially dependent time series data. Nonetheless, a di?cult issue is how we can consistently estimate a localized bandwidth. This paper presents a nonparametric localized bandwidth estimator, for which we establish a completely new asymptotic theory. Applications of this new bandwidth estimator to the kernel density estimation of Eurodollar deposit rate and the S&P 500 daily return demonstrate the effectiveness and competitiveness of the proposed localized bandwidth.  相似文献   

18.
Based on an FQ-System for continuous unimodal distributions, which was introduced by Scheffner (1998), we propose a pure data-driven method for density estimation, which provides good results even for small samples. This procedure does not involve any problems or uncertainties as e.g. bandwidth selection for kernel density estimates.  相似文献   

19.
This paper examines the problem of assessing local influence on the optimal bandwidth estimation in kernel smoothing based on cross validation. The bandwidth for kernel smoothing plays an important role in the model fitting and is often estimated using the cross-validation criterion. Following the argument of the second-order approach to local influence suggested by Wu and Luo (1993), we develop a new diagnostic statistic to examine the local influence of the observations on the estimation of the optimal bandwidth, where the perturbation may belong to one of three schemes. These are the response perturbation, the perturbation in the explanatory variable, and the case-weight

perturbation. The proposed diagnostic is nonparametric and is capable of identifying influential observations with strong influence on the bandwidth estimation. An example is presented to illustrate the application of the proposed diagnostic, and the usefulness of the nonparametric approach is illustrated in comparison with some other approaches to the assessment of local influence  相似文献   

20.
In order to explore and compare a finite number T of data sets by applying functional principal component analysis (FPCA) to the T associated probability density functions, we estimate these density functions by using the multivariate kernel method. The data set sizes being fixed, we study the behaviour of this FPCA under the assumption that all the bandwidth matrices used in the estimation of densities are proportional to a common parameter h and proportional to either the variance matrices or the identity matrix. In this context, we propose a selection criterion of the parameter h which depends only on the data and the FPCA method. Then, on simulated examples, we compare the quality of approximation of the FPCA when the bandwidth matrices are selected using either the previous criterion or two other classical bandwidth selection methods, that is, a plug-in or a cross-validation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号