首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, Virtual Cellular Manufacturing (VCM), an alternative approach to implementing cellular manufacturing, is investigated. VCM combines the setup efficiency typically obtained by Group Technology (GT) cellular manufacturing (CM) systems with the routing flexibility of a job shop. Unlike traditional CM systems in which the shop is physically designed as a series of cells, family-based scheduling criteria are used to form logical cells within a shop using a process layout. The result is the formation of temporary, virtual cells as opposed to the more traditional, permanent, physical cells present in GT systems. Virtual cells allow the shop to be more responsive to changes in demand and workload patterns. Production using VCM is compared to production using traditional cellular and job shop approaches. Results indicate that VCM yields significantly better flow time and due date performance over a wide range of common operating conditions, as well as being more robust to demand variability.  相似文献   

2.
This study compares different strategies for arranging machines in a facility. Computer simulation of two different machine shops was used to compare process layout (the arrangement of groups of machines where the machines within a group are interchangeable) to cellular layout designed using group technology concepts (the use of manufacturing cells where each cell contains different types of machines dedicated to the production of similar parts). Four layout strategies, including process layout, cellular layout, and two hybrid layouts, were compared in two machine-shop models. The shops that used cellular layouts had shorter setup times, lower machine utilization, and shorter distances traveled, on average. The shops with process layout, however, had better performance on queue-related statistics such as work-in-process inventory level and average flow time. This suggests that a well-organized traditional job shop may be able to achieve overall performance that at least is comparable to that of the same shop using cellular (group technology) layout.  相似文献   

3.
Although order and labor dispatching in the job shop manufacturing setting have been investigated extensively over the last three decades, its representation of actual processes found in practice today is limited due to the move to cellular manufacturing (CM). Manufacturing cells have become an important approach to batch manufacturing in the last two decades, and their layout structure provides a dominant flow structure for the part routings. The flow shop nature of manufacturing cells adds a simplifying structure to the problem of planning worker assignments and order releases, which makes it more amenable to the use of optimization techniques. In this paper we exploit this characteristic and present two mathematical modeling approaches for making order dispatching and labor assignment/reassignment decisions in two different CM settings. The two formulations are evaluated in a dynamic simulation setting and compared to a heuristic procedure using tardiness as the primary performance measure. The formulations are superior to the heuristic approach and can be incorporated into detail scheduling systems that are being implemented by corporations employing enterprise resource planning (ERP) systems today.  相似文献   

4.
Research relating to sequencing rules in simple job shops has proliferated, but there has not been a corresponding proliferation of research evaluating similar sequencing rules in more complex assembly job shops. In a simple job shop, all operations are performed serially; but an assembly shop encompasses both serial and parallel operations. As a result of the increased complexity of assembly shops, the results associated with the performance of sequencing rules in simple job shops cannot be expected for an assembly shop. In this paper, 11 sequencing rules (some of which are common to simple job shops and some decigned specifically for assembly shops) are evaluated using a simulation analysis of a hypothetical assembly shop. The simulation results are analyzed using an ANOVA procedure that identifies significant differences in the results of several performance measures. Sensitivity analysis also is performed to determine the effect of job structure on the performance of the sequencing rules.  相似文献   

5.
A two-phase approach is used to examine the impact of job scheduling rules and tool selection policies for a dynamic job shop system in a tool-shared, flexible manufacturing environment. The first phase develops a generalized simulation model and analyses 'simple' job scheduling rules and tool selection policies under various operating scenarios. The results from this investigation are then used to develop and analyse various bi-criteria rules in the second phase of this study. The results show that the scheduling rules have the most significant impact on system performance, particularly at high shop load levels. Tool selection policies affect some of the performance measures, most notably, proportion of tardy jobs, to a lesser degree. Higher machine utilizations can be obtained at higher tool duplication levels but at the expense of increased tooling costs and lower tool utilization. The results also show that using different processing time distributions may have a significant impact on shop performance.  相似文献   

6.
Work flows in a job shop are influenced by the load per release and time interval between release factors. We focus on the latter factor, job release times. Building on Elvers' work, this study evaluates the impact of different job release time distributions on shop performance. Using a computer simulation of a random job shop and a full factorial experimental design, we demonstrate that the type of distribution does affect performance–a finding consistent with results from job shops characterized by good shop floor control practices. These findings are explained by examining the shape and variance traits of the underlying job release time distributions.  相似文献   

7.
Past research has shown that it is possible to simultaneously achieve the setup efficiencies of traditional cellular manufacturing systems and the routeing flexibility of a job shop by viewing cells not as permanent, physical structures, but as temporary, 'virtual' entities. This research demonstrates that the advantages of virtual manufacturing cells can be obtained over a range of part family configurations. In particular, virtual cellular manufacturing is robust to changes in the number and size of families being processed. Further, the research shows that the benefits can be obtained under setup conditions impartial to a family-oriented part environment.  相似文献   

8.
We investigate the performance of capacity-sensitive order review and release (ORR) procedures in job shop environments that have not been previously explored. Previous research has ignored the case of job shops which must perform to very tight due-dates because of time-sensitive customers. We propose and test a new capacity sensitive ORR procedure called path based bottleneck (PBB) in such environments, along with the modified infinite loading (MIL) procedure which has been shown to work well in several studies. We compare the performance of these two controlled release rules with that of immediate release rule under different conditions of capacity utilization and customer specified exogenous duedates. Our results indicate that PBB performs well in lowering total costs when due-dates are tight, while MIL is a better procedure with relatively loose to medium due-dates. We also show that in many cases, the shortest processing time (SPT) dispatching rule is a superior performer than a due-date based rule like critical ratio (CR); a conclusion which is contrary to the existing research in this area. In addition, the shop floor control policies recommended are shown to be sensitive to the cost structure of the firm. The managerial implications of this research in providing effective shop floor control in job shops operating under tight due-date conditions are also discussed.  相似文献   

9.
Operation-based flowtime estimation in a dynamic job shop   总被引:1,自引:0,他引:1  
In the scheduling literature, estimation of job flowtimes has been an important issue since the late 1960s. The previous studies focus on the problem in the context of due date assignment and develop methods using aggregate information in the estimation process. In this study, we propose a new flowtime estimation method that utilizes the detailed job, shop and route information for operations of jobs as well as the machine imbalance information. This type of information is now available in computer-integrated manufacturing systems. The performance of the proposed method is measured by computer simulation under various experimental conditions. It is compared with the existing flowtime estimation methods for a wide variety of performance measures. The results indicate that the proposed method outperforms all the other flowtime estimation methods. Moreover, it is quite robust to changing shop conditions (i.e., machine breakdowns, arrival rate and processing time variations, etc.). A comprehensive bibliography is also provided in the paper.  相似文献   

10.
The flow shop scheduling problem is finding a sequence given n jobs with same order at m machines according to certain performance measure(s). The job can be processed on at most one machine; meanwhile one machine can process at most one job. The most common objective for this problem is makespan. However, many real-world scheduling problems are multi-objective by nature. Over the years there have been several approaches used to deal with the multi-objective flow shop scheduling problems (MOFSP). Hence, in this study, we provide a brief literature review of the contributions to MOFSP and identify areas of opportunity for future research.  相似文献   

11.
This study examines the effects of using different priority rules at different stages of a multistage, flow-dominant shop. A simulation model is constructed of a manufacturing system comprised of three stages: gateway, intcrmcdiatc, and finishing. As is typical of a flow-dominant shop, the overall flow of the simulated system (gateway to intermediate to finishing) is consistent with a flow shop, but processing in the intermediate stage involves multiple work centers and resembles a job shop. Shop performance is observed when four well-known priority heuristics are applied in different combinations in the gateway, intermediate, and finishing stages of the process. Multiple performance measures addressing the strategic objectives of delivery speed and delivery reliability are recorded under two different shop load conditions. Results show that the measures of both delivery speed and delivery reliability are affected by the priority rule combinations, and that a tradeoff exists between average performance and consistency of performance. Certain priority rule combinations affect performance in predictable ways, allowing the user to assess tradeoffs between delivery speed and delivery reliability.  相似文献   

12.
Protecting throughput from variance is the key to achieving lean. Workload control (WLC) accomplishes this in complex make‐to‐order job shops by controlling lead times, capacity, and work‐in‐process (WIP). However, the concept has been dismissed by many authors who believe its order release mechanism reduces the effectiveness of shop floor dispatching and increases work center idleness, thereby also increasing job tardiness results. We show that these problems have been overcome. A WLC order release method known as “LUMS OR” (Lancaster University Management School order release) combines continuous with periodic release, allowing the release of work to be triggered between periodic releases if a work center is starving. This paper refines the method based on the literature (creating “LUMS COR” [Lancaster University Management School corrected order release]) before comparing its performance against the best‐performing purely periodic and continuous release rules across a range of flow directions, from the pure job shop to the general flow shop. Results demonstrate that LUMS COR and the continuous WLC release methods consistently outperform purely periodic release and Constant WIP. LUMS COR is considered the best solution in practice due to its excellent performance and ease of implementation. Findings have significant implications for research and practice: throughput times and job tardiness results can be improved simultaneously and order release and dispatching rules can complement each other. Thus, WLC represents an effective means of implementing lean principles in a make‐to‐order context.  相似文献   

13.
Job shops have long faced pressures for improvement in a challenging and volatile environment. Today's trends of global competition and shortening of product life cycles suggest that both the challenges and the intensity of market volatility will only increase. Consequently, the study of tactics for maximizing the flexibility and responsiveness of a job shop is important. Indeed, there is a significant body of literature that has produced guidelines on when and how to deploy tactics such as alternate routings for jobs and transfers of cross‐trained workers between machines. In this paper we consider a different tactic by adjusting the length of workdays. Hours in excess of a 40‐hour week are exchanged for compensatory time off at time and a half, and the total amount of accrued compensatory time is limited to no more than 160 hours in accordance with pending legislation. We propose several simple flexible workday policies that are based on an input/output control approach and investigate their performance in a simulated job shop. We find significant gains in performance over a fixed schedule of eight hours per day. Our results also provide insights into the selection of policy parameters.  相似文献   

14.
In recent years many firms have been implementing small lot size production. Lot splitting breaks large orders into smaller transfer lots and offers the ability to move parts more quickly through the production process. This paper extends the deterministic studies by investigating various lot splitting policies in both stochastic job shop and stochastic flow shop settings using performance measures of mean flow time and the standard deviation of flow time. Using a computer simulation experiment, we found that in stochastic dynamic job shops, the number of lot splits is more important than the exact form of splitting. However, when optimal job sizes are determined for each scenario, we found a few circumstances where the implementation of a small initial split, called a “flag,” can provide measurable improvement in flow time performance. Interestingly, the vast majority of previous research indicates that methods other than equal lot splitting typically improves makespan performance. The earlier research, however, has been set in the static, deterministic flow shop environment. Thus, our results are of practical interest since they show that the specific method of lot splitting is important in only a small set of realistic environments while the choice of an appropriate number of splits is typically more important.  相似文献   

15.
Cellular manufacturing systems have been proposed as an alternative to the job shop since they provide some of the operational benefits of a flow line production process, while retaining to some extent the flexibility of job shops. However, this must be balanced against the possibility of additional initial investments in equipment to form the cells and a certain loss in manufacturing flexibility, particularly in terms of the ability to deal with long-term demand changes. This paper presents a model-based heuristic cell system redesign methodology to deal with such demand changes. The methodology is validated and applied to system designs generated from several data sets published in the literature. Results show that different kinds of demand changes incur distinct kinds of costs. Further, characteristics of cell designs that can handle long-term demand changes at least cost are identified.  相似文献   

16.
This study compares input control based on aggregate shop loads with that based on bottleneck resource loads. Two appropriate release mechanisms are developed and compared in flow and job shops that have various levels of a bottleneck constraint. Simulation results show that both the level of bottleneck and the flow pattern influence the effectiveness of the strategies. Release based on aggregate loads works well when shop loads are balanced or when there is a bottleneck but the flow is highly structured, as in a flow shop. Release based on bottleneck loads works best when flow patterns are less structured, as in a job shop.  相似文献   

17.

In this paper, a Multi Objective Genetic Algorithm (MOGA) is proposed to derive the optimal machine-wise priority dispatching rules ( pdrs ) to resolve the conflict among the contending jobs in the Giffler and Thompson (GT) procedure applied for job shop problems. The performance criterion considered is the weighed sum of the multiple objectives minimization of makespan, minimization of total idle time of machines and minimization of total tardiness. The weights assigned for combining the objectives into a scalar fitness function are not constant. They are specified randomly for each evaluation. This in turn leads to the multidirectional search in the proposed MOGA, which in turn mitigates the solution being entrapped in local minima. The applicability and usefulness of the proposed methodology for the scheduling of job shops is illustrated with 28 benchmark problems available in the open literature.  相似文献   

18.
While the majority of the literature on shop scheduling has emphasized time-based performance criteria such as mean flow time, lateness, and tardiness, the primary goal of management should be the maximization of shop profitability. In this research the net present value (NPV) criterion is introduced to measure shop profitability. This measure combines aspects of job flow time and inventory holding costs into a single measure. A simulation model of a job shop is used to examine the performance of a variety of time- and value-based scheduling rules. These rules are evaluated with respect to the NPV criterion in both random and flow shop environments. The results suggest that priority rules that utilize monetary information about jobs yield a higher NPV than many time-based rules in most situations, with little sacrifice in job tardiness. A well-researched time-based rule, critical ratio, also provides excellent performance when the shop is heavily loaded.  相似文献   

19.
Controlling the flow of material on the shop floor involves releasing and dispatching jobs to meet customer due-date requirements while attempting to keep operating costs low. This report presents an evaluation of five releasing mechanisms and four dispatching rules under various levels of aggregate due-date tightness, shop cost structure, and machine utilization using simulation. The performance criteria of total shop cost, jobs on shop floor, deviation from due dates, and job queue time are collected to demonstrate the interactive nature of releasing and dispatching on shop performance.  相似文献   

20.
We investigate the problem of on-line scheduling two-machine open shops with the objective of minimizing the makespan.Jobs arrive independently over time, and the existence of a job is not known until its arrival. In the clairvoyant on-line model, the processing requirement of every job becomes fully known at the arrival of the job, while inthe non-clairvoyant on-line model, this processing requirement is notknown until the job is processed and completed.In both models, scheduling of a job is irrevocable.We study the two-machine open shop problem for both models in the preemptive and in the non-preemptive version. For each of the four variants, we provide an algorithm that is best possible with respect to the worst-case performance. In the clairvoyant on-line model, the best worst-case performance ratios are 5/4 (preemptive) and 3/2 (non-preemptive), and in the non-clairvoyant on-line model, they are 3/2 (preemptive and non-preemptive).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号